
KIP-909: DNS Resolution Failure Should Not Fail the Clients

Status
Motivation
Proposed Changes

Public Facing Changes
Internal Changes

New Configuration
New Error
Compatibility, Deprecation, and Migration Plan

Compatibility
Deprecation
Migration

Case Study
KafkaConsumer
KafkaProducer
AdminClient
What should users do after the timeout expires?

Test Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: (Not happening yet)here

JIRA: here

Motivation
Instantiating a new client may result in a fatal failure if the bootstrap server cannot be resolved due to misconfiguration or transient network issues such as
slow DNS. This is suboptimal because of the fact that it might take a long time for the address to become available at the DNS server, and users will need
to continue to retry. Also, the ConfigException exception type does not accurately reflect the root cause of the problem, which makes it hard to handle this
failure case. We think it is reasonable to allow users to have a grace period to retry if the address cannot be resolved immediately. Also, poisoning the
clients during the construction can be obstructive; I think it is better to fail the client on its first attempt to connect to the network.

Proposed Changes
This KIP proposes moving bootstrapping logic from the constructor to the NetworkClient poll for two purposes,

1. not failing the client upon instantiation. In many cases, this behavior also kills the app, which might not be desirable.

2. piggybacking onto the client poll is a more natural way to retry.

We propose to add a new configuration option for timing out the bootstrapping process, a new exception type for handling bootstrap-related issues, and
additional logging to aid in diagnosing bootstrapping failures.

Public Facing Changes

Timeout Configuration: bootstrap.resolve.timeout.ms
Exception: BootstrapResolutionException extends KafkaException
Logging: log.WARN("Unable to bootstrap after {} ms.", elapsedMs)

Internal Changes

Client Constructor: The constructor will only parse the bootstrap configuration.
NetworkClient:

Bootstrapping will now occur in the poll method before attempting to update the metadata. This includes resolving the addresses and
bootstrapping the metadata.
An error message will be logged in the event of a failed bootstrap process.
If the timeout exceeds, a non-retriable will be thrown.BootstrapResolutionException

Consumer, Producer, and Admin Clients: The bootstrap code will be changed.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-14648
http://bootstrap.connection.timeout.ms

1.
2.

New Configuration
bootstrap.resolve.timeout.ms

The proposed configuration specifies the maximum amount of time clients can spend trying to resolve for the bootstrap server address. If the resolution
cannot be completed within this timeframe, a BootstrapResolutionException will be thrown.

Type: long

Default: 120000 (i.e. 2 minutes)

Valid Values: 0 - LONG_MAX

Importance: high

New Error
Name: BootstrapResolutionException extends KafkaException

Message: "Couldn't resolve server {} from {} as DNS resolution failed for {}"

Type: Non-retriable.

Compatibility, Deprecation, and Migration Plan

Compatibility

Failed DNS resolution throws BootstraResolutionException: Users are expected to catch the error or the client will be poisioned
Users who tried to catch ConfigException for DNS resolution error will no longer need this logic.

Deprecation

There's no deprecation plan

Migration

There's no migration plan

Case Study
In this section, I outlined how clients can react to bootstrap failures. In particular, I want to cover two common cases:

Misconfiguration or non-transient issues with the network
Transient network issues, e.g., slow DNS resolution.

KafkaConsumer

Case 1: Non-transient case

When the bootstrap timeout expires, the client will throw a BootstrapResolutionException.

Case 2: Transient Network Issue

consumer poll won't return any record until the client has been bootstrapped. If the issue cannot be resolved within the bootstrap timeout, a
BootstrapConnectionException will be thrown.

KafkaProducer

Case 1: Non-transient case

The BootstrapResolutionException will be thrown in send() and partitionsFor() when the bootstrap timeout expires. If the elapsed before the max.block.ms
timeout expires, a TimeoutException will be thrown instead.

Case 2: Transient Network Issue

http://max.block.ms

1.

a.
b.

2.

a.

1.

a.
b.

2.

a.
b.

3.
a.

b.
4.

a.
b.

5.
a.
b.

6.
a.
b.

The and methods will be blocked on bootstrap until either the or the bootstrap timeout elapses.send() partitionsFor() max.block.ms

AdminClient

Case 1: Non-transient case

The API call results will either timeout if the request times out first or be completed exceptionally with a BootstrapResolutionException.

Case 2: Transient Network Issue

The user won't be able to get the results back until the address is resolved. Meanwhile, the API calls can expire.

What should users do after the timeout expires?

The exception is meant to be fatal, so the user should check their network setup, configuration, or adjust the timeout.

The user can continue to retry, but this exception is meant to alert user to take action upon failing to bootstrap.

Test Plan
NetworkClient

Test DNS resolution upon its initial poll
Test if the right exception type is thrown

Existing clients (Consumer, Producer, AdminClient)

Test successful bootstrapping upon retrying

Rejected Alternatives
We've discussed many alternatives. Eventually, we asked ourselves what's the goal of this KIP, i.e., giving people a chance to retry on DNS resolution
without poisoning the client. Which came down to two resolutions: 1. giving people a configurable timeout, and 2. adding a fatal error to alert the user.

Here are the rejected alternatives:

Maintain the current code behavior and add a retry loop with a timeout.

Pros: Same logic, less code change.
Cons: Do users want to be blocked on instantiating the client? I don't like this idea.

Throw DNS resolution upon failing but no retry

Pros: No additional config is needed
Cons: This is a behavioral change, and the application owner might need to rewrite the exception handling, i.e. catching the DNS failure
logic.

No retry. The network client will continue to retry until it is interrupted.
Pros: No compatibility break. No additional exception handling logic, the network client will just log the error and continue to retry upon
the next poll
Cons: I think we should have some failure mechanism to notify users.

Making BootstrapResolutionException retriable
Pros: For the transient case, we might not even need a timeout, people are expected to retry on catching this exception
Cons: Then we reply on alerting mechanism to alert users the issue. If it is indeed a configuration issue, then it is harder to discover

Combine DNS resolution and connection into a single timeout
Pros: Using a single timer to account for the connection time.
Cons: Should we make connection retry fatal after the timeout? Maybe not.

5min default timeout
We've decided to reduce it to 2min to stay coherent to the delivery.timeout.ms
5min can be too long

	KIP-909: DNS Resolution Failure Should Not Fail the Clients

