
1.

2.
3.
4.
5.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

GSoCFailureDetector

GSoC 2010: ZooKeeper Failure Detector Model

Student: Abmar Barros (abmargb at gmail dot com)
Assigned mentor: Flavio Paiva Junqueira

Abstract

ZooKeeper servers detect the failure of other servers and clients by counting the number of 'ticks' for which it doesn't get a heartbeat from other machines.
This is the 'timeout' method and it works very well; however it is possible that it is too aggressive and not easily tuned for some more unusual ZooKeeper
installations. This project's goals are to abstract the failure detector to a separate module, to implement several failure detectors and to compare their
appropriateness for ZooKeeper.

The full is attached to this page.gsoc-zookeeper-failuredetector.pdf

Roadmap

Discuss the project with the community (dev/user lists), asking for suggestions and requirements and decide which type and which methods are
to be implemented (Community Bonding Period)
Study the chosen failure detection methods specification and the ZooKeeper code (24th May)
Isolate the failure detector model in the ZooKeeper code (14th June)
Implement the chosen failure detector methods (28th June)
Evaluate the QoS metrics for the implemented methods (26th July)

Failure detection methods' references

Wei Chen, Sam Toueg, Marcos Kawazoe Aguilera, , IEEE Transactions on Computers, vol. 51, On the Quality of Service of Failure Detectors
no. 1, pp. 13-32, Jan. 2002, doi:10.1109/12.980014
Marin Bertier, Olivier Marin, Pierre Sens, , Proceedings of the Implementation and Performance Evaluation of an Adaptable Failure Detector
2002 International Conference on Dependable Systems and Networks, p.354-363, June 23-26, 2002
Naohiro Hayashibara, Xavier Défago, Rami Yared, Takuya Katayama, , srds, pp.66-78, 23rd IEEE International The Accrual Failure Detector
Symposium on Reliable Distributed Systems (SRDS'04), 2004

Specific objectives

The ones with strike-through have already been finished

Write pseudo-codes for the proposed algorithms
Create FailureDetector interface
Write implementations and tests of the FailureDetector interface based on the proposed algorithms
Refactor client-side code of the client-server monitoring to use the proposed FailureDetector interface
Make the failure detection and its parameters configurable on the client
Refactor server-side code of the client-server monitoring to use the proposed FailureDetector interface
Refactor the code of the server-server monitoring to use the proposed FailureDetector interface
Make the failure detection and its parameters configurable on the server (to server-server and client-server monitoring)
Evaluate the QoS metrics with experimentation
Write Forrest docs

Related JIRA

https://issues.apache.org/jira/browse/ZOOKEEPER-702
https://issues.apache.org/jira/browse/ZOOKEEPER-811
https://issues.apache.org/jira/browse/ZOOKEEPER-810
https://issues.apache.org/jira/browse/ZOOKEEPER-812

Progress Report

Community bonding period

Studied ZooKeeper code regarding failure detection
Studied the proposed failure detection algorithms

05/Jun/10

Discussed whether FD instance should run in the same thread of the application
Proposed first version of the FailureDetector interface. It does not consider application messages as heartbeats.
Adapted ClientCnxn class to use the proposed interface.

https://cwiki-test.apache.org/confluence/download/attachments/24193428/gsoc-zookeeper-failuredetector.pdf?version=1&modificationDate=1295033673000&api=v2
#
#
#
#

11/Jun/10

Written pseudo-codes for the proposed failure detection algorithms
Started discussion on how could the application scheduling interval could interfere on adaptive FD methods.

22/Jun/10

Attached the classes of the initially proposed FD methods (Phi Accrual, Chen, Bertier, Fixed Heartbeat) and the corresponding unit tests.
Included suggestions Flavio gave concerning package naming and method scope.

28/Jun/10

Started discussion on how to configure the FD method and its parameters at the client and server sides.

02/Jul/10

Enhanced pseudocodes documentation
Created appMessageReceived() and appMessageSent() methods. These methods allow the Failure Detector to use application messages as
heartbeats, which reflects the ZooKeeper case.
Added command line options to the client side in order to configure failure detector method and its parameters.
Unit tests expanded to comply with new methods.
Enhanced javadocs for each Failure Detector implementation

08/Jul/10

Adapted failure detectors to work on both client and server sides of the client-server monitoring.
Refactored server-side code to use the FailureDetector interface.
Created a new FailureDetector, which groups monitoreds by their tick time, similar to what the SessionTracking does.
Made the server-client failure detector (and its parameters) options of the ZooKeeper configuration file.

23/Jul/10

Made Learners track client heartbeats and send statistical data of the heartbeat sampling window to the Learner
Analyzed paper about application message used as heartbeat.

30/Jul/10

Refactored the code of the Leader-Learner monitoring in order to use failure detector module
Added options in configuration file to configure Leader-Learner monitoring
Fixed bugs in FDs initialization and in some cases of session registering
Fixed bug in server recovery on the client side

09/Aug/10

Set up first experiments in Emulab
Instrumented code to report some detection metrics as false suspicion and detection time
Enhanced java documentation, started to write forrest docs

14/Aug/10

Kept on changing experimentation scenarios to check the behaviour of the failure detectors
Tuned some initialization parameters of the failure detectors based on some experimentation results
Finished writing forrest documentation
Added a new parameter to phi accrual FD - the minimum window size to begin timeout adaptation.
Added a moderation step to Bertier FD, to comply with second level task described in his paper
Made Chen's alpha parameter configurable, and not a quarter of the timeout

16/Aug/10

Refactored the way default values are passed to failure detectors
Finished experimentation and written experiment report

Experimentation

Experimental design

First batch of tests:
1 client and 1 server connected by an transcontinental link (Campina Grande-Brazil / Newark-USA)
client sending async operations to server
client running during 10 min (average)
link = 1MBps, 250ms
timeout = 5000ms
replication = 5

used the following failure detectors:
Fixed heartbeat
Chen (alpha =)0, 1000
Bertier (moderationstep =)0, 1000
Phi accrual (threshold = ; minwindowsize=50).5, 8

Second batch of tests:
200 clients and 1 server connected in an emulated WAN in emulab
client sending async operations to server
clients running during 10 min (average)
link = 2MBps, 250ms, message loss probability of 0.1
timeout = 5000ms
used the following failure detectors with fixed parameters:

Fixed heartbeat
Chen (alpha = 1250)
Bertier (moderationstep = 1000)
Phi-accrual (threshold = 2)

Results

First batch of tests:

Method Average detection
time

Stddev of the detection
time

False
suspicions

Fixedhb 4731.8 299.6985 0/5

Chen (alpha=0) 5/5

Chen (alpha=1000) 1810.8 347.3632 0/5

Bertier (moderation step = 0) 784.6 483.5642 0/5

Bertier (moderation step =
1000)

1228.2 804.5773 0/5

Phi accrual (threshold = 0.5) 714.6667 521.9745 2/5

Phi accrual(threshold = 8.) 1574.75 602.7799 1/5

Second batch of tests:
In these tests, Fixed heartbeat and Bertier's strategies did not present any false suspicion. With the given alpha, Chen's
presented 13/200 false suspicions, and the Phi-accrual, with the windowminsize parameter equals to 0, have made false
suspicion on all the clients. Below, we show the average detection time of all methods but the Phi-accrual:
http://www2.lsd.ufcg.edu.br/~abmar/zk/fd-comparison.png
The Phi-accrual method must be evaluated again with a better windowminsize parameter in a scenario with a greater duration,
so the warm-up period is not considered.

Concluding remarks

As expected, we noticed that the fixed heartbeat method works well when we run ZooKeeper in a controlled environment, where the network behavior is
expected. In this cases we can tune the fixed timeout after some network analysis. However, in scenarios where we have a changing network behavior,
such in a WAN, the adaptive methods can be a good pick. Below, there is an overview of each failure detector:

Fixed heartbeat: In average, with default parameters, the fixed heartbeat strategy had the highest detection time, but with no false suspicion.
However, if the timeout is not well defined, failures may take a long time to be detected, or false suspicion rate would be increased. As said
before, this strategy is useful when there is a controlled environment, in which the network can be characterized.
Chen: This strategy requires some assumption over the network, once the administrator needs to define the alpha parameter - the safety margin
for the estimation. However, with default parameters, Chen et al. method performed well in a WAN deploy. It managed to decrease the average
detection time with a low false suspicion rate.
Bertier: Bertier et al initially proposed a failure detector that requires no assumption over the network but a single moderation step to be added to
the estimation when the monitored is at a suspected state when a heartbeat is received. With these experiments, we have come to same
conclusion as Hayashibara et al: that this failure detector is very sensitive to message loss and fluctuation in the arrival times of heartbeats. In this
sense, the moderation step turned out to be an important parameter for this failure detector. With a moderation step of 1000, Bertier's failure
detector reached a higher average detection time than the Chen's method, but lower than the fixed hearbeat strategy. It is worth to mention that
Bertier’s failure detector was primarily designed to be used over local area networks (LANs), that is, environments wherein messages are seldom
lost. As we could see, with a single client Berties's method stands out with a low detection time and no false suspicions, even with the moderation
step equals to 0.
Phi-accrual: The phi-accrual is the method that requires less information about the network behavior. However it relies on a large sampling
window to perform a good estimation. As we could see, in the experiments that a minimum window size was not used, there was a huge number
of false suspicions. The effect of the threshold is only noticeable when there is some deviation from the average. The phi-accrual stands out in a
WAN with unknown behavior, but it is mandatory to set a good (high) initial timeout value for the warm-up period of the method, which happens
while the minimum window size is not reached.

Design decisions

Should a failure detector instance (FD) run in a separate thread from the application?

Drawbacks
There will be another thread competing for CPU, and its inclusion should add some overhead.

#
#
#
http://www2.lsd.ufcg.edu.br/~abmar/zk/fd-comparison.png

Concurrency issues must be handled.
Benefits

The FD will run in a more independent way, and it will notify the application of changes using listeners or callbacks. If it runs in the same
thread, the application must signal the failure detector of changes, and also retrieve its status periodically. In other words, the application
code will be coupled to FD code.

Decided to use the FD on the same thread of the application

How to use application message in adaptive failure detectors?

Decided to just delay the estimated arrival time if the next message, and to not use this message in the timeout adaptation.

Due to the usage of application messages as heartbeat, the actual heartbeats are not sent regularly. How to compute
the next estimated arrival time?

Decided to use interarrival heartbeat times. When a application message is received, the time of the last heartbeat received in shifted.

How to report sampling window statistical data from Learners to Leader?

Decided to do heartbeat tracking on the Learners, and then mean and standard deviation of the interarrival heartbeat times is reported to Leader.
A new method in the FailureDetector interface was created to comply with this requirement.

Future work

Update C client to use the Failure Detector module. This may require to have all failure detectors implemented in C. https://issues.apache.org/jira
/browse/ZOOKEEPER-848
Analyze the overhead of the timeout computation on adaptive FDs.
Contrast adaptive FDs behaviour with sampling window full and in a warm-up period (when sampling window is not full).
Extend experimentation in order to cover other scenarios, such as different number of nodes, experiment duration, infrastructure (link
characteristics) and failure detection parameters.

https://issues.apache.org/jira/browse/ZOOKEEPER-848
https://issues.apache.org/jira/browse/ZOOKEEPER-848

	GSoCFailureDetector

