KIP-932: Queues for Kafka

® Status
® Motivation
® Proposed Changes
© Concepts
= Relationship with consumer groups
© Share group membership
" Data model
® Share Group and Member
® Target Assignment
® Current Assignment
® Rebalance process
® Group epoch - Trigger a rebalance
® Assignment epoch - Compute the group assignment
® Member epoch - Reconciliation of the group
Member ID
Heartbeat and session
Static membership
Share group states
" Persistence and fail-over
© In-flight records
= Ordering
® Managing the SPSO and SPEO
Log retention
Log compaction
Reading transactional records
In-flight records example
Batching
" Fetching and acknowledging records
© Client programming interface
= Acknowledge commit callback
= Example - Acknowledging a batch of records (implicit acknowledgement)
" Example - Per-record acknowledgement (explicit acknowledgement)
= Example - Per-record acknowledgement, ending processing of the batch on an error (explicit acknowledgement)
o Access control
© Managing durable share-partition state
= Examples
= Control records
® SHARE_CHECKPOINT
® SHARE_DELTA
= Examples with control records
® Recovering share-partition state and interactions with log cleaning
© Administration
® Public Interfaces
© Client API changes
= KafkaShareConsumer
= AcknowledgeCommitCallback
ConsumerRecord
AcknowledgeType
AdminClient
® AlterShareGroupOffsetsResult
AlterShareGroupOffsetsOptions
DeleteShareGroupOffsetsResult
DeleteShareGroupOffsetsOptions
DeleteShareGroupsResult
DeleteShareGroupsOptions
DescribeShareGroupsResult
ShareGroupDescription
DescribeShareGroupsOptions
ListShareGroupOffsetsResult
ListShareGroupOffsetsOptions
ListShareGroupOffsetsSpec
ListShareGroupsResult
ShareGroupListing
ListShareGroupsOptions
ListGroupsResult
GroupListing
® ListGroupsOptions
= GroupType
® ShareGroupState
© Command-line tools
" kafka-share-groups.sh
" kafka-console-share-consumer.sh
= kafka-producer-perf-test.sh
© Configuration
= Broker configuration

= Group configuration
= Consumer configuration
o Kafka protocol changes
" Error codes
® ShareGroupHeartbeat API
® Request schema
® Response schema
= ShareGroupDescribe API
® Request schema
® Response schema
= ShareFetch API
® Request schema
® Response schema
= ShareAcknowledge API
® Request schema
® Response schema
= AlterShareGroupOffsets API
® Request schema
® Response schema
® DeleteShareGroupOffsets API
® Request schema
® Response schema
® DescribeShareGroupOffsets API
® Request schema
® Response schema
© Records
= Group metadata
® ConsumerGroupMetadataKey
® ConsumerGroupMetadataValue
" Share-partition state
® ShareCheckpointValue
® ShareDeltaValue
® |ndex structure for locating share-partition state
© Metrics
= Broker Metrics
® Future Work
® Compatibility, Deprecation, and Migration Plan
© Kafka Broker Migration
® Test Plan
® Rejected Alternatives
© Share group consumers use KafkaConsumer

Status

Current state: Under Discussion
Discussion thread: https://lists.apache.org/thread/9wdxthfsbm5xf01y4xvq6qtlg0gq96Iiq
JIRA: https://issues.apache.org/jira/lbrowse/KAFKA-16092

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Apache Kafka has achieved great success as a highly scalable event-streaming platform. The way that consumer groups assign partitions to members of
the group gives a powerful combination of ordering and scalability, but it does introduce coupling between the number of consumers in a consumer group
and the number of partitions. Users of Kafka often have to “over-partition” simply to ensure they can have sufficient parallel consumption to cope with peak
loads.

There are plenty of situations in which consumers could cooperatively consume from a stream of events without needing to be assigned exclusive access
to specific topic-partitions. This, together with per-message acknowledgement and delivery counts, enables a class of use-cases traditionally built around
the concept of a queue. For example, a queue is perfect for a situation in which messages are independent work items that can be processed concurrently
by a pool of applications, and individually retried or acknowledged as processing completes. This is much easier to achieve using a queue rather than a
partitioned topic with a consumer group.

This KIP introduces the concept of a share group as a way of enabling cooperative consumption using Kafka topics. It does not add the concept of a
“queue” to Kafka per se, but rather that introduces cooperative consumption to accommodate these queuing use-cases using regular Kafka topics. Share
groups make this possible. You can think of a share group as roughly equivalent to a “durable shared subscription” in existing systems.

This is indeed Queues for Kafka - queues done in a Kafka way, with no maximum queue depth and the ability to reset to a specific time for point-in-time
recovery.

Proposed Changes

https://lists.apache.org/thread/9wdxthfsbm5xf01y4xvq6qtlg0gq96lq
https://issues.apache.org/jira/browse/KAFKA-16092

Share groups allow Kafka consumers to work together cooperatively consuming and processing the records from topics. They are an alternative to
consumer groups for situations in which finer-grained sharing is required.

The fundamental differences between a share group and a consumer group are:

The consumers in a share group cooperatively consume records with partitions that may be assigned to multiple consumers
The number of consumers in a share group can exceed the number of partitions

Records are acknowledged on an individual basis, although the system is optimized to work in batches for improved efficiency
Delivery attempts to consumers in a share group are counted to enable automated handling of unprocessable records

Share groups are a new type of group, alongside the existing consumer groups, adding " shar e" to the existing group types of "consuner" and "cl ass
ic".

All consumers in the same share group subscribed to the same topic cooperatively consume the records of that topic. If a topic is accessed by consumers
in more than one share group, each share group cooperatively consumes from that topic independently of the other share groups.

Each consumer can dynamically set the list of topics it wants to subscribe to. In practice, all of the consumers in a share group will usually subscribe to the
same topic or topics.

When a consumer in a share-group fetches records, it receives available records from any of the topic-partitions that match its subscriptions. Records are
acquired for delivery to this consumer with a time-limited acquisition lock. While a record is acquired, it is not available for another consumer. By default,
the lock duration is 30s, but it can also be controlled using the group gr oup. share. recor d. | ock. dur ati on. ns configuration parameter. The idea is
that the lock is automatically released once the lock duration has elapsed, and then the record is available to be given to another consumer. The consumer
which holds the lock can deal with it in the following ways:

® The consumer can acknowledge successful processing of the record

® The consumer can release the record, which makes the record available for another delivery attempt

® The consumer can reject the record, which indicates that the record is unprocessable and does not make the record available for another delivery
attempt

® The consumer can do nothing, in which case the lock is automatically released when the lock duration has elapsed

The cluster limits the number of records acquired for consumers for each topic-partition in a share group. Once the limit is reached, fetching records will
temporarily yield no further records until the number of acquired records reduces, as naturally happens when the locks time out. This limit is controlled by
the broker configuration property gr oup. share. record. | ock. partition.limt . By limiting the duration of the acquisition lock and automatically
releasing the locks, the broker ensures delivery progresses even in the presence of consumer failures.

Concepts

There are some concepts being introduced to Kafka to support share groups.

The group coordinator is now responsible for coordination of share groups as well as consumer groups. The responsibility for being coordinator for the
cluster’s share groups is distributed among the brokers, exactly as for consumer groups. For share groups, the group coordinator has the following
responsibilities:

® |t maintains the list of share-group members.

® |t manages the topic-partition assignments for the share-group members using a server-side partition assignor. An initial, trivial implementation
would be to give each member the list of all topic-partitions which matches its subscriptions and then use the pull-based protocol to fetch records
from all partitions. A more sophisticated implementation could use topic-partition load and lag metrics to distribute partitions among the
consumers as a kind of autonomous, self-balancing partition assignment, steering more consumers to busier partitions, for example. Alternatively,
a push-based fetching scheme could be used.

A share-partition is a topic-partition with a subscription in a share group. For a topic-partition subscribed in more than one share group, each share group
has its own share-partition.

A share-partition leader is a component of the broker which manages the share-group’s view of a topic-partition. It is co-located with the topic-partition
leader, and the leadership of a share-partition follows the leadership of the topic-partition. The share-partition leader has the following responsibilities:

® |t fetches the records from the replica manager from the local replica
® |t manages and persists the states of the in-flight records

This means that the fetch-from-follower optimization is not supported by share-groups. The KIP does however include rack information so that consumers
could preferentially fetch from share-partitions whose leadership is in the same rack.

Relationship with consumer groups

Consumer groups and share groups exist in the same namespace in a Kafka cluster. As a result, if there’s a consumer group with a particular name, you
cannot create a share group with the same name, and vice versa. But consumer groups and share groups are quite different in terms of use, so attempts
to perform operations for one kind of group on a group of the incorrect type will fail with a G- oupl dNot FoundExcept i on . The new Admi nCl i ent .

i st Groups method gives a way of listing groups of all types.

Because consumer groups and share groups are both created automatically on first use, the type of group that is created depends upon how the group
name was first used. As a result, it is helpful to be able to ensure that a group of a particular name can only be created with a particular type. This is
achieved by defining a group configuration property gr oup. t ype , using the kaf ka- conf i gs. sh tool or the Admi nCl i ent .

i ncrement al Al t er Confi gs method. For example, you could use the following command to ensure that the group ID " G1" is to be used for a share
group only.

$ bin/kaf ka-configs.sh --bootstrap-server |ocal host: 9092 --entity-nane group --entity-name Gl --alter --add-
config group.type=share

If a regular Kafka consumer then attempts to use " GL" as a consumer group, the exception " | nconsi st ent G oupPr ot ocol Excepti on" will be
thrown.

Share group membership

This KIP builds upon the new consumer group protocol in KIP-848: The Next Generation of the Consumer Rebalance Protocol.

Share group membership is controlled by the group coordinator. Consumers in a share group use the heartbeat mechanism to join, leave and confirm
continued membership of the share group, using the new Shar eG oupHear t beat RPC. Share-partition assignment is also piggybacked on the heartbeat
mechanism. Share groups only support server-side assignors, which implement the new internal or g. apache. kaf ka. coor di nat or . gr oup.

assi gnor. SharePartitionAssi gnor interface.

This KIP introduces just one assignor, or g. apache. kaf ka. coor di nat or. gr oup. assi gnor. Si npl eShar eAssi gnor , which assigns all partitions
of all subscribed topics to all members. In the future, a more sophisticated share group assignor could balance the number of consumers assigned to the
partitions, and it may well revoke partitions from existing members in order to improve the balance. The simple assignor isn’t that smart.

For a share group, a rebalance is a much less significant event than for a consumer group because there’s no fencing. When a partition is assigned to a
member of a share group, it’s telling the member that it should fetch records from that partition, which it may well be sharing with the other members of the
share group. The members are not aware of each other, and there’s no synchronization barrier or fencing involved. The group coordinator, using the
server-side assignor, is responsible for telling the members which partitions they are assigned and revoked. But the aim is to give every member useful
work, rather than to keep the members' assignments safely separated.

For a share group, the group coordinator does not need to persist the assignments, but it does need to persist the assignment epoch so that it doesn't
move backwards if the group coordinator changes.

The reconciliation process for a share group is very simple because there is no fencing - the group coordinator revokes the partitions which are no longer
in the target assignment of the member and assigns the new partitions to the member at the same time. There’s no need for the revocations to be

acknowledged before new partitions are assigned. The member acknowledges changes to its assignment, but the group coordinator does not depend
upon receiving the acknowledgement to proceed.

Data model

This is the data model maintained by the group coordinator for share groups.

Share Group and Member

The group and members represent the current state of a share group. This is reminiscent of a simplified consumer group.

Share Group

Name Type Description
Group ID string The group ID as configured by the consumer. The ID uniquely identifies the group.
Group Epoch int32 The current epoch of the group. The epoch is incremented by the group coordinator when a new assignment is

required for the group.

Server Assignore | string The server-side assignor used by the group.
Members [IMember The set of members in the group.
Partitions 0 The metadata of the partitions that the group is subscribed to. This is used to detect partition metadata changes.
Metadata PartitionMet
adata

Member

Name Type Description
Member ID string The unique identifier of the member. It is generated by the coordinator upon the first heartbeat request and must be

used throughout the lifetime of the member.

Rack ID string The rack ID configured by the consumer.

Client ID string The client ID configured by the consumer.

Client Host string The client host of the consumer.

Subscribed [Istring The current set of subscribed topic names configured by the consumer.

Topic Names

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-848%3A+The+Next+Generation+of+the+Consumer+Rebalance+Protocol

Target Assignment

The target assignment of the group. This represents the assignment that all the members of the group will eventually converge to. It is a declarative
assignment which is generated by the assignor based on the group state.

Target Assignment

Name

Group ID

Assignment
Epoch

Assignment
Error

Members
Member
Name

Member ID

Partitions

Metadata

Type
string

int32
int8

[I[Member

Type
string
1
TopicldPartiti
on

bytes

Current Assignment

Description

The group ID as configured by the consumer. The ID uniquely identifies the group.

The epoch of the assignment. It represents the epoch of the group used to generate the assignment. It will eventually
match the group epoch.

The error reported by the assignor.

The assignment for each member.

Description

The unique identifier of the member.

The set of partitions assigned to this member.

The metadata assigned to this member.

The current assignment of a member.

Current Assignment

Name
Group ID
Member ID

Member
Epoch

Error

Partitions

Version

Metadata

Type
string
string

int32

int8

0
TopicldPartition

intl6

bytes

Rebalance process

Description
The group ID as configured by the consumer. The ID uniquely identifies the group.
The member ID of this member.

The current epoch of this member. The epoch is the assignment epoch of the assignment currently used by this
member.

The error reported by the assignor.

The current partitions used by the member.

The version used to encode the metadata.

The current metadata used by the member.

The rebalance process is driven by the group coordinator and revolves around three kinds of epochs: the group epoch, the assignment epoch and the
member epoch. This is intentionally very similar to how the process works for consumer groups in KIP-848.

Group epoch - Trigger arebalance

The group coordinator is responsible for triggering a rebalance of the group when the metadata of the group changes. The group epoch represents the
generation of the group metadata. It is incremented whenever the group metadata is updated. This happens in the following cases:

A member joins or leaves the group.

A member is removed from the group by the group coordinator.

L]
® A member updates its subscriptions.
L]
L]

The partition metadata is updated, such as when a new partition is added or a topic is created or deleted.

In all these cases, a new version of the group metadata is calculated by the group coordinator with an incremented group epoch. For a share group, the
group coordinator does not persist the group metadata. The new version of the group metadata signals that a new assignment is required for the

group.

Assignment epoch - Compute the group assignment

Whenever the group epoch is larger that the target assignment epoch, the group coordinator triggers the computation of a new target assignment based on
the latest group metadata using a server-side assignor. For a share group, the group coordinator does not persist the assignment. The assignment epoch
becomes the group epoch of the group metadata used to compute the assignment.

Member epoch - Reconciliation of the group
Each member independently reconciles its current assignment with its new target assignment, converging with the target epoch and assignment.

The group coordinator revokes the partitions which are no longer in the target assignment of the member, and assigns the partitions which have been
added to the target assignment of the member. It provides the new assignment to the member in its heartbeat response until the member acknowledges
the assignment change in a heartbeat request.

By assigning and revoking partitions for the members of the group, the group coordinator can balance the partitions across the members of the group.

The member provides the rebalance timeout to the group coordinator when it joins the group. This is the timeout for the group coordinator waiting for the
member to acknowledge that it has adopted the target assignment. If the member does not confirm the target assignment within the rebalance timeout, the
group coordinator removes the member from the group.

Member ID

Every member is uniquely identified by the UUID called the member ID. This UUID is generated by the group coordinator and given to the member when it
joins the group. It is used in all communication with the group coordinator and must be kept during the entire lifespan of the member.

Heartbeat and session

The member uses the new Shar eG oupHear t beat API to establish a session with the group coordinator. The member is expected to heartbeat every gr
oup. share. heartbeat.interval . ns in order to keep its session opened. If it does not heartbeat at least once within the gr oup. shar e. sessi on.

ti meout . s, the group coordinator will remove the member from the group. The member is told the heartbeat interval in the response to the Shar eG oup
Hear t beat API.

If a member is removed from the group because it fails to heartbeat, because there’s intentionally no fencing, at the protocol level, the consumer does not
lose the ability to fetch and acknowledge records. A failure to heartbeat is most likely because the consumer has died. If the consumer just failed to
heartbeat due to a temporary pause, it could in theory continue to fetch and acknowledge records. When it finally sends a heartbeat and realises it's been
kicked out of the group, it should stop fetching records because its assignment has been revoked, and rejoin the group.

Static membership

Share groups do not support static membership. Because the membership of a share group is more ephemeral, there’s less advantage to maintaining an
assignment when a member has temporarily left but will rejoin within the session timeout.

Share group states

Share groups do not have the ASSIGNING state because only server-side assignors are supported, and do not need the RECONCILING state because
there’s no need for all members to converge before the group enters the STABLE state.

® EMPTY - When a share group is created or the last member leaves the group, the share group is EMPTY.
® STABLE - When a share group has active members, the share group is STABLE.
®* DEAD - When the share group remains EMPTY for a configured period, the group coordinator transitions it to DEAD to delete it.

Persistence and fail-over

For a share group, the group coordinator only persists a single record which essentially reserves the group's ID as a share group in the namespace of
groups.

When the group coordinator fails over, the newly elected coordinator loads the state from the __consuner _of f set s partition. This means a share group
will remain in existence across the fail-over. However, the members of the groups and their assignments are not persisted. This means that existing
members will have to rejoin the share group following a coordinator failover.

In-flight records

For each share-partition, the share group adds some state management for the records being consumed. The starting offset of records which are eligible
for consumption is known as the share-partition start offset (SPSO), and the last offset of records which are eligible for consumption is known as the sha
re-partition end offset (SPEO). The records between starting at the SPSO and up to the SPEO are known as the in-flight records. So, a share-partition
is essentially managing the consumption of the in-flight records.

The SPEO is not necessarily always at the end of the topic-partition and it just advances freely as records are fetched beyond this point. The segment of
the topic-partition between the SPSO and the SPEO is a sliding window that moves as records are consumed. The share-partition leader limits the
distance between the SPSO and the SPEO. The upper bound is controlled by the broker configuration gr oup. share. record. | ock. partition.limt
. Unlike existing queuing systems, there’s no “maximum queue depth”, but there is a limit to the number of in-flight records at any point in time.

The records in a share-partition are in one of four states:

State Description
Available The record is available for a consumer
Acquired The record has been acquired for a specific consumer, with a time-limited acquisition lock
Acknowledged | The record has been processed and acknowledged by a consumer

Archived The record is not available for a consumer

All records before the SPSO are in Archived state. All records after the SPEO are in Available state, but not yet being delivered to consumers.

The records also have a delivery count in order to prevent unprocessable records being endlessly delivered to consumers. If a record is repeatedly
causing exceptions during its processing, it is likely that it is a “poison message”, perhaps with a formatting or semantic error. Every time that a record is
acquired by a consumer in a share group, its delivery count increments by 1. The first time a record is acquired, its delivery count is 1.

The state transitions look like this:

acquired for consuner
(delivery count++)

- if (delivery count < group.share.delivery.attenpt.linmit)
- released by consuner
- acquisition |l ock el apsed

B +
| Acqui red s +
I + |
| |
| | - if (delivery count == group.share.delivery.attenpt.limt)
| accepted by consumer | - released by consuner
| | - acquisition |l ock el apsed
\% | OR
R + | - rejected by consuner as unprocessabl e
| Acknow edged | |
I + |
| |
| |
| SPSO noves past record |
| |
\4 |
L + |
| Ar chi ved BRI +
[IR +

The share-partition leader persists the states and delivery counts. These updates are not performed with exactly-once semantics, so the delivery count
cannot be relied upon to be precise in all situations. It is intended as a way to protect against poison messages, rather than a precise count of the number
of times a record is delivered to a consumer.

When records are fetched for a consumer, the share-partition leader starts at the SPSO and finds Available records. For each record it finds, it moves it
into Acquired state, bumps its delivery count and adds it to a batch of acquired records to return to the consumer. The consumer then processes the
records and acknowledges their consumption. The delivery attempt completes successfully and the records move into Acknowledged state.

Alternatively, if the consumer cannot process a record or its acquisition lock elapses, the delivery attempt completes unsuccessfully and the record’s next
state depends on the delivery count. If the delivery count has reached the cluster’'s share delivery attempt limit (5 by default), the record moves into Archiv
ed state and is not eligible for additional delivery attempts. If the delivery count has not reached the limit, the record moves back into Available state and
can be delivered again.

This means that the delivery behavior is at-least-once.

Ordering

Share groups focus primarily on sharing to allow consumers to be scaled independently of partitions. The records in a share-partition can be delivered out
of order to a consumer, in particular when redeliveries occur.

For example, imagine two consumers in a share group consuming from a single-partition topic. The first consumer fetches records 100 to 109 inclusive
and then crashes. At the same time, the second consumer fetches, processes and acknowledges records 110 to 119. When the second consumer fetches
again, it gets records 100 to 109 with their delivery counts set to 2 because they are being redelivered. That's exactly what you want, but the offsets do not
necessarily increase monotonically in the same way as they do for a consumer group.

The records returned in a batch for particular share-partition are guaranteed to be in order of increasing offset. There are no guarantees about the ordering
of offsets between different batches.

Managing the SPSO and SPEO

The consumer group concepts of seeking and position do not apply to share groups. The SPSO for each share-partition can be initialized for an empty
share group and the SPEO naturally moves forwards as records are consumed.

When a topic subscription is added to a share group for the first time, the SPSO is initialized for each share-partition. By default, the SPSO for each share-
partition is initialized to the latest offset for the corresponding topic-partitions.

Alternatively, there is an administrative action available using either Adnmi nCl i ent . al t er Shar eG oupO f set s or the kaf ka- shar e- gr oups. sh tool
to reset the SPSO for an empty share group with no active members. This can be used to “reset” a share group to the start of a topic, a particular
timestamp or the end of a topic. It can also be used to initialize the share group to the start of a topic. Resetting the SPSO discards all of the in-flight record
state and delivery counts.

For example, to start using a share group S1 to consume for the first time from the earliest offset of a topic T1, you could use:

$ kaf ka- share-groups. sh --bootstrap-server |ocal host: 9092 --group S1 --topic Tl --reset-offsets --to-earliest --
execut e

If the number of partitions is increased for a topic with a subscription in a share group, the SPSO for the newly created share-partitions is initialized to 0
(which is of course both the earliest and latest offset for an empty topic-partition). This means there is no doubt about what happens when the number of
partitions is increased.

If the SPSO is reset to an offset that has been tiered to remote storage (KIP-405: Kafka Tiered Storage), there will be a performance impact just as for
existing consumers fetching records from remote storage.

Log retention
The SPSO for each share-partition is bounded by the log start offset (LSO) of the topic-partition, which is itself managed by the retention policy.

If log segments are being retained based on time, when an inactive log segment's age exceeds the configured time, the LSO advances to the start of the
next log segment and the old segment is deleted. If the SPSO is within the log segment that is deleted, it will also advance to the next log segment. This is
roughly equivalent to message-based expiration in other messaging systems.

If log segments are being retained based on size, when the log exceeds the configured size, the LSO advances to the start of the next log segment and
the old segment is deleted. If the SPSO is within the log segment that is deleted, it will also advance to the next log segment. This keeps control of the
space consumed by the log, but it does potentially silently remove records that were eligible for delivery. When using share groups with log retention based
on size, it is important to bear this in mind.

When the SPSO advances because of the LSO moving, the in-flight records past which the SPSO moves logically move into Archived state. The
exception is that records which are already Acquired for delivery to consumers can be acknowledged with any Acknow edgeType, at which point they
logically transition into Archived state too; there's no need to throw an exception for a consumer which has just processed a record which is about to
become Archived.

Note that because the share groups are all consuming from the same log, the retention behavior for a topic applies to all of the share groups consuming
from that topic.

Log compaction

When share groups are consuming from compacted topics, there is the possibility that in-flight records are cleaned while being consumed. In this case, the
delivery flow for these records continues as normal because the disappearance of the cleaned records will only be discovered when they are next fetched
from the log. This is analogous to a consumer group reading from a compacted topic - records which have been fetched by the consumer can continue to
be processed, but if the consumer tried to fetch them again, it would discover they were no longer there.

When fetching records from a compacted topic, it is possible that record batches fetched have offset gaps which correspond to records the log cleaner
removed. This simple results in gaps of the range of offsets of the in-flight records.

Reading transactional records

Each consumer in a consumer group has its own isolation level which controls how it handles records which were produced in transactions. For a share
group, the concept of isolation level applies to the entire group, not each consumer.

The isolation level of a share group is controlled by the group configuration gr oup. share. i sol ati on. | evel .

For the r ead_uncomni t t ed isolation level, which is the default, the share group consumes all transactional and non-transactional records.

For the r ead_conmi t t ed isolation level, the share group only consumes committed records. The share-partition leader itself is responsible for keeping
track of the commit and abort markers and filtering out transactional records which have been aborted. So, the set of records which are eligible to become

in-flight records are non-transactional records and committed transactional records only. The SPEO can only move up to the last stable offset.

This processing has to occur on the broker because none of the clients receives all of the records. It can be performed with shallow iteration of the log.

In-flight records example

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage

An example of a share-partition showing the states looks like this:

[S [S [S [S [S [S [S [S [S [S [S +
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | <- offset
| Archv | Archv | Acqrd | Avail | Acqrd | Acked | Archv | Avail | Avail | Avail | Avail | <- state
| | | 1 | 2 | 1 | | | | | | | <- delivery count
Fommmm o - Fommmm o - B TR PR Fommmm o - Fommmm o - Fommmm o - Fommmm o - Fommmm o - B T P +

| |

+-- Share-partition start offset (SPSO +-- Share-partition end of fset
(SPEO

The share group is currently managing the consumption of the in-flight records, which have offsets 2 to 8 inclusive.

All records earlier than offset 2 are in Archived state and are not in-flight

Records 2 and 4 have been acquired for consumption by a consumer, and their delivery counts have been incremented to 1

Record 3 has previously been acquired twice for consumption by a consumer, but went back into Available state

Record 5 has been acknowledged

Record 6 has previously been acquired for consumption by a consumer, was rejected because it cannot be processed, and is in Archived state
Records 7 and 8 are available for consumption by a consumer

All records starting with offset 9 and later are in Available state

The cluster records this information durably. In this example, the durable state contains the SPSO position, the non-zero delivery count for offset 3, the Ack
nowledged state of offset 5, and the Archived state of offset 6.

Batching

Cooperative consumption is inherently record-based, but the expectation is that batching is used to maximise performance. For example, in the case
where all records in a batch are processed successfully:

®* When a consumer fetches records, the share-partition leader prefers to return complete record batches.

® |n the usual and optimal case, all of the records in a batch will be in Available state and can all be moved to Acquired state with the same
acquisition lock time-out.

® When the consumer has processed the fetched records, it can acknowledge delivery of all of the records as a single batch, transitioning them all
into Acknowledged state.

So, when a bunch of consumers are cooperatively consumed from a topic using a share group, the natural unit of sharing is the record batch. The
processing loop is roughly:

® Fetch record batch
® Process records
® Acknowledge all records in batch

In the situation where some records in a batch have been released or rejected separately, subsequent fetches of those records are more likely to have
gaps.

Fetching and acknowledging records
Share groups introduce two new APIs in the Kafka protocol for fetching and acknowledging records.

® Shar eFet ch for fetching records from share-partition leaders
® Shar eAcknow edge for acknowledging delivery with share-partition leaders

The Shar eFet ch APl works very much like incremental fetch using a concept called a share session. Each share session contains a set of topic-
partitions which are managed in the share-partition leaders. The share-partition leader manages the fetching of records and the in-flight record state for its
share-partitions. The consumer adds and removes topic-partitions from its share session using the Shar eFet ch API just like the Fet ch API is used for
incremental fetch. With the Fet ch API, the consumer specifies the fetch offset. With the Shar eFet ch API, the consumer just fetches records and the
share-partition leader decides which records to return.

In order to ensure no share-partitions are starved from records being fetched, the share-partition leader rotates the order of share-partitions for which it
returns partition information. This ensures that it eventually returns data about all partitions for which data is available.

When a batch of records is first read from the log and added to the in-flight records for a share-partition, the broker does not know whether the set of
records between the batch’s base offset and the last offset contains any gaps, as might occur for example as a result of log compaction. When the broker
does not know which offsets correspond to records, the batch is considered an unmaterialized record batch. Rather than forcing the broker to iterate
through all of the records in all cases, which might require decompressing every batch, the broker can send unmaterialized record batches to consumers. It
initially assumes that all offsets between the base offset and the last offset correspond to records. When the consumer processes the batch, it may find
gaps and it reports these using the Shar eAcknow edge API. This means that the presence of unmaterialized record batches containing gaps might
temporarily inflate the number of in-flight records, but this will be resolved by the consumer acknowledgements.

Client programming interface

A new interface Kaf kaShar eConsuner is introduced for consuming from share groups. It looks very similar to Kaf kaConsumer trimmed down to the
methods that apply to share groups.

In order to retain similarity with Kaf kaConsumer and make it easy for applications to move between the two interface, Kaf kaShar eConsuner follows
the same threading rules as Kaf kaConsuner . It is not thread-safe and only one thread at a time may called the methods of Kaf kaShar eConsuner .
Unsynchronized access will result in Concur r ent Modi fi cati onExcepti on . The only exception to this rule is Kaf kaShar eConsuner . wakeup() whi
ch may be called from any thread.

To join a share group, the client application instantiates a Kaf kaShar eConsuner using the configuration parameter gr oup. i d to give the ID of the share
group. Then, it uses Kaf kaShar eConsuner . subscri be(Col | ection<String> topics) to provide the list of topics that it wishes to consume from.
The consumer is not allowed to assign partitions itself.

Each call to Kaf kaShar eConsuner . pol | (Dur ati on) fetches data from any of the topic-partitions for the topics to which it subscribed. It returns a set
of in-flight records acquired for this consumer for the duration of the acquisition lock timeout. For efficiency, the consumer preferentially returns complete
record sets with no gaps. The application then processes the records and acknowledges their delivery, either using explicit or implicit acknowledgement.

If the application calls the Kaf kaShar eConsuner . acknow edge(Consumner Record, Acknow edgeType) method for any record in the batch, it is
using explicit acknowledgement. The calls to Kaf kaShar eConsuner . acknowl edge(Consuner Record, Acknow edgeType) must be issued in the
order in which the records appear in the Consuner Recor ds object, which will be in order of increasing offset for each share-partition. In this case:

® The application calls Kaf kaShar eConsuner . commi t Sync/ Async() which commits the acknowledgements to Kafka. If any records in the
batch were not acknowledged, they remain acquired and will be presented to the application in response to a future poll.

® The application calls Kaf kaShar eConsuner . pol | (Dur at i on) without committing first, which commits the acknowledgements to Kafka
asynchronously. In this case, no exception is thrown by a failure to commit the acknowledgement. If any records in the batch were not
acknowledged, they remain acquired and will be presented to the application in response to a future poll.

® The application calls Kaf kaShar eConsuner . cl ose() which attempts to commit any pending acknowledgements and releases any remaining
acquired records.

If the application does not call Kaf kaShar eConsuner . acknow edge(Consuner Record, Acknow edgeType) for any record in the batch, it is using i
mplicit acknowledgement. In this case:

® The application calls Kaf kaShar eConsuner . comi t Sync/ Async() which implicitly acknowledges all of the delivered records as processed
successfully and commits the acknowledgements to Kafka.

® The application calls Kaf kaShar eConsuner . pol | (Dur ati on) without committing, which also implicitly acknowledges all of the delivered
records and commits the acknowledgements to Kafka asynchronously. In this case, no exception is thrown by a failure to commit the
acknowledgements.

® The application calls Kaf kaShar eConsuner . cl ose() which releases any acquired records without acknowledgement.

The Kaf kaShar eConsuner guarantees that the records returned in the Consuner Recor ds object for a specific share-partition are in order of increasing
offset. For each share-partition, the share-partition leader guarantees that acknowledgements for the records in a batch are performed atomically. This
makes error handling significantly more straightforward because there can be one error code per share-partition.

When the share-partition leader receives a request to acknowledge delivery, which can occur as a separate RPC or piggybacked on a request to fetch
more records, it checks that the records being acknowledged are still in the Acquired state and acquired by the share group member trying to
acknowledge them. If a record had reached its acquisition lock timeout and reverted to Available state, the attempt to acknowledge it will fail with or g.
apache. kaf ka. cormon. errors. Ti meout Except i on, but the record may well be re-acquired for the same consumer and returned to it again.

Acknowledge commit callback

Acknowledgements errors are delivered to a new kind of callback called an acknowledge commit callback which can optionally be registered with a Kaf k
aShar eConsuner . wakeup() .

® |f the application uses Kaf kaShar eConsuner . conmi t Sync() to commit its acknowledgements, the results of the acknowledgements is
returned to the application

® |f the application uses Kaf kaShar eConsuner . conmi t Async() or Kaf kaShar eConsuner . pol | (Dur ati on) to commit its
acknowledgements, the results of the acknowledgements are only delivered if there is an acknowledge commit callback registered.

The acknowledge commit callback is called on the application thread and it is not permitted to call the methods of Kaf kaShar eConsuner with the
exception of Kaf kaShar eConsuner . wakeup() .

Example - Acknowledging a batch of records (implicit acknowledgement)

In this example, a consumer using share group " myshar e" subscribes to topic " f 00" . It processes all of the records in the batch and then calls Kaf kaSh
areConsuner . commi t Sync() which implicitly marks all of the records in the batch as successfully consumed and commits the acknowledgement
synchronously with Kafka. Asynchronous commit would also be acceptable.

Properties props = new Properties();
props. set Property("bootstrap. servers”, "local host:9092");
props. set Property("group.id", "nyshare");

Kaf kaShar eConsuner <String, String> consurmer = new Kaf kaShareConsumer <>(props, new StringDeserializer(), new
StringDeserializer());
consuner . subscri be(Arrays. asList("fo00"));
while (true) {

Consuner Records<String, String> records = consuner. poll (Duration.of MIIlis(100)); // Returns a batch of
acquired records

for (ConsumerRecord<String, String> record : records) {

doProcessi ng(record);

}
consuner. conm t Sync(); /] Commit the
acknowl edgenent of all the records in the batch

}

Behind the scenes, the Kaf kaShar eConsuner fetches records from the share-partition leader. The leader selects the records in Available state, and will
return complete record batches (https://kafka.apache.org/documentation/#recordbatch) if possible. It moves the records into Acquired state, increments
the delivery count, starts the acquisition lock timeout, and returns them to the Kaf kaShar eConsuner . Then the Kaf kaShar eConsuner keeps a map of
the state of the records it has fetched and returns a batch to the application.

When the application calls Kaf kaShar eConsuner . commi t Sync() , the Kaf kaConsuner updates the state map by marking all of the records in the
batch as Acknowledged and it then commits the acknowledgements by sending the new state information to the share-partition leader. For each share-
partition, the share-partition leader updates the record states atomically.

Example - Per-record acknowledgement (explicit acknowledgement)

In this example, the application uses the result of processing the records to acknowledge or reject the records in the batch.

Properties props = new Properties();
props. set Property("bootstrap. servers”, "local host:9092");
props. set Property("group.id", "nyshare");

Kaf kaShar eConsuner<String, String> consurmer = new Kaf kaShar eConsumer <>(props, new StringDeserializer(), new
StringDeserializer());
consuner . subscri be(Arrays. asList("fo00"));
while (true) {

Consuner Records<String, String> records = consuner. poll (Duration.of MIIlis(100)); /'l Returns a batch of
acquired records

for (ConsumerRecord<String, String> record : records) {

try {
doProcessi ng(record);
consuner . acknow edge(record, Acknow edgeType. ACCEPT); /1 Mark the record as

processed successfully
} catch (Exception e) {

consuner . acknow edge(record, Acknow edgeType. REJECT); /1 Mark the record as
unpr ocessabl e
}
}
consuner. conm t Async(); /'l Commit the
acknow edgenents of all the records in the batch

}

In this example, each record processed is separately acknowledged using a call to the new Kaf kaShar eConsuner . acknow edge(Consuner Record,
Acknow edgeType) method. The Acknow edgeType argument indicates whether the record was processed successfully or not. In this case, the bad
records are rejected meaning that they’re not eligible for further delivery attempts. For a permanent error such as a deserialization error, this is appropriate.
For a transient error which might not affect a subsequent processing attempt, the Acknowl edgeType. RELEASE is more appropriate because the record
remains eligible for further delivery attempts.

The calls to Kaf kaShar eConsuner . acknow edge(Consunmer Record, Acknow edgeType) are simply updating the state map in the Kaf kaConsune!
. Itis only once Kaf kaShar eConsuner . conmi t Async() is called that the acknowledgements are committed by sending the new state information to the
share-partition leader.

Example - Per-record acknowledgement, ending processing of the batch on an error (explicit
acknowledgement)

In this example, the application stops processing the batch when it encounters an exception.

https://kafka.apache.org/documentation/#recordbatch

Properties props = new Properties();
props. set Property("bootstrap. servers”, "local host:9092");
props. set Property("group.id", "nyshare");

Kaf kaShar eConsuner <String, String> consurmer = new Kaf kaShareConsumer <>(props, new StringDeserializer(), new
StringDeserializer());
consuner . subscri be(Arrays. asList("fo00"));
while (true) {

Consuner Records<String, String> records = consuner. poll (Duration.of MIIlis(100)); // Returns a batch of
acquired records

for (ConsumerRecord<String, String> record : records) {

try {
doProcessi ng(record);
consuner . acknow edge(record, Acknow edgeType. ACCEPT) ; /1 Mark the record as

processed successfully
} catch (Exception e) {

consuner . acknow edge(record, Acknow edgeType. REJECT); /1 Mark this record as
unpr ocessabl e
br eak;
}
}
consuner. comm t Async(); /1 Commt the
acknowl edgenents of the acknow edged records only

}

There are the following cases in this example:

1. The batch contains no records, in which case the application just polls again. The call to Kaf kaShar eConsuner . conm t Async() just does
nothing because the batch was empty.

2. All of the records in the batch are processed successfully. The calls to Kaf kaShar eConsuner . acknow edge(Consuner Recor d,

Acknow edgeType. ACCEPT) marks all records in the batch as successfully processed.

3. One of the records encounters an exception. The call to Kaf kaShar eConsumner . acknow edge(Consuner Record, Acknow edgeType.
REJECT) rejects that record. Earlier records in the batch have already been marked as successfully processed. The call to Kaf kaShar eConsunei
.conmmi t Async() commits the acknowledgements, but the records after the failed record remain Acquired as part of the same delivery attempt
and will be presented to the application in response to another poll.

Access control

Share group access control is performed on the GROUP resource type, just the same as consumer groups, with the same rules for the actions checked. A
share group is just a new kind of group.

® Operations which read information about a share group need permission to perform the DESCRI BE action on the named group resource
® Operations which change information about a share group (such as consuming a record) need permission to perform the READ action on the
named group resource

Managing durable share-partition state

The share-partition leader is responsible for recording the durable state for the share-partitions it leads. For each share-partition, we need to be able to
recover:

® The Share-Partition Start Offset (SPSO)
® The state of the in-flight records
® The delivery counts of records whose delivery failed

The delivery counts are only maintained approximately and the Acquired state is not persisted. This minimises the amount of share-partition state that has
to be logged. The expectation is that most records will be fetched and acknowledged in batches with only one delivery attempt.

Examples
Operation State changes Cumulative state
Starting state of topic- SPS0=100, SPEO=100 SPS0=100, SPEO=100
partition with latest offset
100

In the batched case with successful processing, there’s a state change per batch to move the SPSO forwards

Fetch records 100-109 SPEO=110, records 100-109 SPS0=100, SPEO=110, records 100-109 (acquired, delivery count 1)
(acquired, delivery count 1)

Acknowledge 100-109

SPS0O=110

SPS0O=110, SPEO=110

With a messier sequence of release and acknowledge, there’s a state change for each operation which can act on multiple records

Fetch records 110-119
Consumer 1 gets 110-112,
consumer 2 gets 113-118,
consumer 3 gets 119

Release 110 (consumer 1)

Acknowledge 119
(consumer 3)

Fetch records 110, 120
(consumer 1)

Lock timeout elapsed 111,
112 (consumer 1's records)

Acknowledge 113-118
(consumer 2)

Fetch records 111,112
(consumer 3)

Acknowledge 110
(consumer 1)

Acknowledge 111,112
(consumer 3)

Control records

The durable share-partition state is recorded using control records, in a similar way to the transaction markers introduced in KIP-98 - Exactly Once Delivery

SPEO=120, records 110-119
(acquired, delivery count 1)

record 110 (available, delivery
count 1)

record 110 (available, delivery
count 1), records 111-118
acquired, record 119
acknowledged

SPEO=121, record 110 (acquired,
delivery count 2), record 120
(acquired, delivery count 1)

records 111-112 (available,
delivery count 1)

records 113-118 acknowledged

records 111-112 (acquired,
delivery count 2)

SPSO=111

SPS0=120

SPS0=110, SPEO=120, records 110-119 (acquired, delivery count 1)

SPS0=110, SPEO=120, record 110 (available, delivery count 1), records 111-119
(acquired, delivery count 1)

SPS0=110, SPEO=120, record 110 (available, delivery count 1), records 111-118
(acquired, delivery count 1), record 119 acknowledged

SPS0=110, SPEO=121, record 110 (acquired, delivery count 2), records 111-118
(acquired, delivery count 1), record 119 acknowledged, record 120 (acquired,
delivery count 1)

SPS0=110, SPEO=121, record 110 (acquired, delivery count 2), records 111-112
(available, delivery count 1), records 113-118 (acquired, delivery count 1), record
119 acknowledged, record 120 (acquired, delivery count 1)

SPS0=110, SPEO=121, record 110 (acquired, delivery count 2), records 111-112
(available, delivery count 1), records 113-119 acknowledged, record 120 (acquired,
delivery count 1)

SPS0=110, SPEO=121, record 110-112 (acquired, delivery count 2), records 113-
119 acknowledged, record 120 (acquired, delivery count 1)

SPS0=111, SPEO=121, record 111-112 (acquired, delivery count 2), records 113-
119 acknowledged, record 120 (acquired, delivery count 1)

SPS0=120, SPEO=121, record 120 (acquired, delivery count 1)

and Transactional Messaging. These control records are written onto the topic-partition whose delivery they reflect. This is important for performance
reasons because it means the share-partition leader is able to read and write them directly on the topic-partition for which it is of course also the leader.

Two new control record types are introduced: SHARE_CHECKPOINT (5) and SHARE_DELTA (6). They are written into separate message sets with the
Control flag set. This flag indicates that the records are not intended for application consumption. Indeed, these message sets are not returned to any
consumers at all since they are just intended for the share-partition leader.

When a control record is written as a result of an operation such as a Shar eAcknowl edge RPC, the control record must be written and fully replicated
before the RPC response is sent.

SHARE_CHECKPOINT

A SHARE_CHECKPOINT record contains a complete checkpoint of the share-partition state. It contains:

The group ID

The SPSO
The SPEO

An array of [BaseOf f set

Last O fset, State,

records with the same state and delivery count

The checkpoint epoch, which is an integer that increments with each SHARE_CHECKPOINT

Del i veryCount] tuples where each tuple contains information for a sequence of

Here are some examples of how the cumulative state from the previous table would be represented in SHARE_CHECKPOINT records:

Cumulative state

SHARE_CHECKPOINT

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging

SPS0O=100, SPEO=100

{
"Goupld": "GL",
" Checkpoi nt Epoch": 1,
"StartOffset": 100,
"EndCf fset": 100,
"States": []
}
SPS0=110, SPEO=121, record 110 (acquired, delivery count 2), records 111-112 (available, delivery
count 1), records 113-118 (acquired, delivery count 1), record 119 acknowledged, record 120 (acquired, {
delivery count 1) "Goupld": "GL",

" Checkpoi nt Epoch": 1,

"StartOffset": 110,

"EndOf fset": 121,

"States": [

{

"BaseOffset": 110,
"LastOFfset": 110,
"State": 0 (Avail able),
"DeliveryCount": 1

I

{
"BaseOf fset": 111,
"LastOFfset": 112,
"State": 0 (Available),
"DeliveryCount": 1

I

{
"BaseOf fset": 113,
"LastOf fset": 118,
"State": 0 (Available),
"DeliveryCount": O

},

{

"BaseCOf fset": 119,
"LastOffset": 119,
"State": 2
(Acknow edged),
"DeliveryCount": 1
(whatever it was when it was
acknowl edged)

I

{
"BaseOf fset": 120,
"LastOFfset": 120,
"State": 0 (Available),
"Del iveryCount": O

}

Note that the Acquired state is not recorded because it's transient. As a result, an Acquired record with a delivery count of 1 is recorded as Available
with a delivery count of 0. In the unlikely event of a share-partition leader crash, memory of the in-flight delivery will be lost.

SHARE_DELTA
A SHARE_DELTA record contains a partial update to the share-partition state. It contains:
® The group ID

® The checkpoint epoch of the SHARE_CHECKPOINT it applies to
® Anarray of [BaseO fset, LastOffset, State, DeliveryCount] tuples

Examples with control records

Here are the previous examples, showing the control records which record the cumulative state durably. Note that any SHARE_DELTA could be replaced
with a SHARE_CHECKPOINT. This example omits the details about consumer instances.

Operation State changes Cumulative state

Starting state = SPS0O=100, SPEO=100 SPS0=100, SPEO=100
of topic-

partition with

latest offset

100

In the batched case with successful processing, there’s a state change per batch to move the SPSO
forwards

Fetch records = SPEO=110, records 100- SPS0=100, SPEO=110, records 100-109 (acquired, delivery count
100-109 109 (acquired, delivery 1)
count 1)

Acknowledge = SPSO=110 SPSO=110, SPEO=110
100-109

With a messier sequence of release and acknowledge, there’s a state change for each operation which can
act on multiple records

Fetch records = SPEO=120, records 110- SPS0=110, SPEO=120, records 110-119 (acquired, delivery count
110-119 119 (acquired, delivery 1)

count 1)
Release 110 record 110 (available, SPS0=110, SPEO=120, record 110 (available, delivery count 1),
delivery count 1) records 111-119 (acquired, delivery count 1)

Control records

SHARE_CHECKPO NT of f set 130:
{
"Groupld": "Gl",
" Checkpoi nt Epoch": 1,
"StartOffset": 110,
"EndCOf fset": 110,
"States": []

SHARE_DELTA of fset 131:

{
"Groupld": "Gl",
" Checkpoi nt Epoch": 1,
"States": [
{
"BaseOf fset": 100,
"LastOf fset": 109,
"State": 2 (Acknow edged),
"DeliveryCount": 1
}
]
}

SHARE_DELTA of fset 132:

{
"Groupld": "Gl",
" Checkpoi nt Epoch": 1,
"States": [
{
"BaseOf fset": 110,
"LastOffset": 110,
"State": 0 (Available),
"DeliveryCount": 1
}
]
}

Note that the SPEO in the control records is 111 at
this point. All records after this are in their first
delivery attempt so this is an acceptable situation.

Acknowledge
119

Fetch records
110, 120

Lock timeout
elapsed 111,
112

Acknowledge
113-118

Fetch records
111,112

record 110 (available,
delivery count 1), records
111-118 acquired, record
119 acknowledged

SPEO=121, record 110
(acquired, delivery count
2), record 120 (acquired,
delivery count 1)

records 111-112
(available, delivery count 1)

records 113-118
acknowledged

records 111-112 (acquired,
delivery count 2)

SPS0=110, SPEO=120, record 110 (available, delivery count 1),
records 111-118 (acquired, delivery count 1), record 119
acknowledged

SPS0=110, SPEO=121, record 110 (acquired, delivery count 2),
records 111-118 (acquired, delivery count 1), record 119
acknowledged, record 120 (acquired, delivery count 1)

SPS0=110, SPEO=121, record 110 (acquired, delivery count 2),
records 111-112 (available, delivery count 1), records 113-118
(acquired, delivery count 1), record 119 acknowledged, record 120
(acquired, delivery count 1)

SPS0=110, SPEO=121, record 110 (acquired, delivery count 2),
records 111-112 (available, delivery count 1), records 113-119
acknowledged, record 120 (acquired, delivery count 1)

SPS0=110, SPEO=121, record 110-112 (acquired, delivery count
2), records 113-119 acknowledged, record 120 (acquired, delivery
count 1)

SHARE_DELTA of fset 133:

{
"Groupld': "GL",
" Checkpoi nt Epoch": 1,
"States": [
{
"BaseOf fset": 111,
"LastOffset": 118,
"State": 0 (Available),
"DeliveryCount": 0O
.
{
"BaseCOf fset": 119,
"LastOFfset": 119,
"State": 2 (Acknow edged),
"DeliveryCount": 1
}
]
}

SHARE_DELTA of fset 134:

{
"Goupld': "GL",
" Checkpoi nt Epoch": 1,
"States": [
{
"BaseOffset": 111,
"LastOFfset": 112,
"State": 0 (Available),
"DeliveryCount": 1
}
]
}

SHARE DELTA of f set 135:
{
"Groupld": "Gl",
" Checkpoi nt Epoch": 1,
"States": [
{
"BaseOffset": 113,
"LastOFfset": 118,
"State": 2 (Acknow edged),
"DeliveryCount": 1
}
]
}

Acknowledge @ SPSO=111 SPSO=111, SPEO=121, record 111-112 (acquired, delivery count
SHARE_DELTA of fset 136:

110 2), records 113-119 acknowledged, record 120 (acquired, delivery
count 1) {
"Groupld": "Gl",
" Checkpoi nt Epoch": 1,
"States": [
{
"BaseOf fset": 110,
"LastOffset": 110,
"State": 2 (Acknow edged),
"DeliveryCount": 2
}
]
}
Acknowledge @ SPS0O=120 SPS0=120, SPEO=121, record 120 (acquired, delivery count 1)
111,112 SHARE_DELTA of fset 137:
{
"Groupld": "Gl",
" Checkpoi nt Epoch": 1,
"States": [
{
"BaseCOf fset": 111,
"LastOffset": 112,
"State": 2 (Acknow edged),
"Del i veryCount": 2
}
]
}

or alternatively, taking a new checkpoint:

SHARE_CHECKPO NT of f set 137:

{
"Goupld": "GL",
" Checkpoi nt Epoch": 2,
"StartOffset": 120,
"EndCf fset": 120,
"States": []

}

Note that the delivery of 120 has not been recorded
yet because it is the first delivery attempt and it is
safe to recover the SPEO back to offset 120 and
repeat the attempt.

Recovering share-partition state and interactions with log cleaning

A share-partition is a topic-partition with a subscription in a share group. The share-partition is essentially a view of the topic-partition, managed by the
share-partition leader, with durable state stored on the topic-partition in SHARE_CHECKPOINT and SHARE_DELTA control records.

In order to recreate the share-partition state when a broker becomes the leader of a share-partition, it must read the most recent SHARE_CHECKPOINT
and any subsequent SHARE_DELTA control records, which will all have the same checkpoint epoch. In order to minimise the amount of log scanning

required, it's important to write SHARE_CHECKPOINT records frequently, and also to have an efficient way of finding the most recent SHARE_CHECKPO
INT record.

For each share-partition, the offset of the most recent SHARE_CHECKPOINT record is called the Share Checkpoint Offset (SCO). The Earliest Share
Offset (ESO) is the earliest of the share checkpoint offsets for all of the share groups with a subscription in a share group.

® The log cleaner can clean all SHARE_CHECKPOINT and SHARE_DELTA records before the SCO.
® The log cleaner must not clean SHARE_CHECKPOINT and SHARE_DELTA records after the SCO.

In practice, the ESO is used as the cut-off point for cleaning of these control records.

Administration

Several components work together to create share groups. The group coordinator is responsible for assignment, membership and the state of the group.
The share-partition leaders are responsible for delivery and acknowledgement. The following table summarises the administration operations and how they
work.

Operation Supported Notes
by

Create Group This occurs as a side-effect of a ShareGroupHeartbeat. The group coordinator writes a record to the consumer offsets
share group = coordinator topic to persist the group's existence.
List share Group
groups coordinator
List share Group
group coordinator
offsets and share-

partition

leaders
Describe Group

share group = coordinator

Alter share Share- The share-partition leader makes a durable share-partition state update for each share-partition affected.

group partition

offsets leaders

Delete Share- The share-partition leader makes a durable share-partition state update for each share-partition affected.

share group = partition

offsets leaders

Delete Group Only empty share groups can be deleted. However, the share-partition leaders need to delete share group offsets, and

share group = coordinator then delete the share group. It is not an atomic operation. The share-partition leader makes a durable share-partition
working with state update for each share-partition affected. The group coordinator writes a tombstone record to the consumer
share-partition | offsets topic to persist the group deletion.
leaders

Public Interfaces

This KIP introduces extensive additions to the public interfaces.

Client API changes

KafkaShareConsumer

This KIP introduces a new interface for consuming records from a share group called or g. apache. kaf ka. cl i ents. consuner. Shar eConsuner with
an implementation called or g. apache. kaf ka. cl i ent's. consuner . Kaf kaShar eConsuner . The interface stability is Evol vi ng .

@nterfaceStability. Evol ving
public interface ShareConsuner<K, V> {

/**

* CGet the current subscription. WIIl return the sane topics used in the nost recent call to
* {@ink #subscribe(Collection)}, or an enpty set if no such call has been made.

*

* @eturn The set of topics currently subscribed to

*/

Set <String> subscription();

/**

* Subscribe to the given list of topics to get dynami cally assigned partitions.

* Topi c subscriptions are not increnental. This list will replace the current

* assignment, if there is one. If the given list of topics is enpty, it is treated the same as {@i nk
#unsubscribe()}.

*

* <p>

* As part of group managenent, the coordinator will keep track of the list of consunmers that belong to a
particul ar

* group and will trigger a rebal ance operation if any one of the follow ng events are triggered:

*

* <l'i>A nmenber joins or |eaves the share group

* An existing nmenber of the share group is shut down or fails

* The nunber of partitions changes for any of the subscribed topics
* <|i>A subscribed topic is created or del eted

*

* @aramtopics The list of topics to subscribe to

* @hrows |1l egal Argunent Exception If topics is null or contains null or enpty elenents
* @hrows Kaf kaException for any other unrecoverable errors
*/

voi d subscri be(Col | ection<String> topics);

/**
* Unsubscribe fromtopics currently subscribed with {@ink #subscribe(Collection)}.
*
* @hrows Kaf kaException for any other unrecoverable errors
*/
voi d unsubscri be();

| **

* Fetch data for the topics specified using {@ink #subscribe(Collection)}. It is an error to not have

* subscribed to any topics before polling for data.

*

* <p>

* This nethod returns imediately if there are records available. Oherwise, it will await the passed
timeout.

* |f the timeout expires, an enpty record set will be returned.

* @aramtinmeout The maxinmumtinme to block (must not be greater than {@ink Long#MAX_VALUE} milliseconds)
* @eturn map of topic to records since the last fetch for the subscribed list of topics

* @hrows AuthenticationException if authentication fails. See the exception for nore details

* @hrows Authorizati onException if caller |lacks Read access to any of the subscribed

* topics or to the configured groupld. See the exception for nore details

* @hrows InterruptException if the calling thread is interrupted before or while this nethod is called
* @hrows InvalidTopi cException if the current subscription contains any invalid

* topic (per {@ink org.apache. kaf ka. conmon. i nt ernal s. Topi c#val i date(String)})

* @hrows WakeupException if {@ink #wakeup()} is called before or while this nethod is called

* @hrows Kaf kaException for any other unrecoverable errors (e.g. invalid groupld or

* session tinmeout, errors deserializing key/value pairs,

* or any new error cases in future versions)

* @hrows |l egal Argunent Exception if the timeout value is negative

* @hrows |l egal StateException if the consumer is not subscribed to any topics

* @hrows ArithneticException if the tineout is greater than {@ink Long#MAX_VALUE} m |l i seconds.
*/

Consuner Recor ds<K, V> poll (Duration tineout);

* Acknow edge successful delivery of a record returned on the last {@ink #poll(Duration)} call.
* The acknow edgenment is commtted on the next {@ink #comm tSync()}, {@ink #comm t Async()} or
* {@ink #poll (Duration)} call.

* <p>

* Records for each topic-partition nmust be acknow edged in the order they were returned from
* {@ink #poll(Duration)}. By using this nethod, the consuner is using

* explicit acknow edgenent </ b>.

* @aramrecord The record to acknow edge

* @hrows Il egal Argunent Exception if the record being acknow edged doesn't neet the ordering requirenent
* @hrows |l egal StateException if the record is not waiting to be acknow edged, or the consumer has
al r eady
* used inplicit acknow edgenent
*/

voi d acknow edge(Consuner Recor d<K, V> record);

/*-k
* Acknow edge delivery of a record returned on the last {@ink #poll (Duration)} call indicating whether

* it was processed successfully. The acknow edgerment is conmitted on the next {@ink #commitSync()},
* {@ink #commitAsync()} or {@ink #poll (Duration)} call. By using this method, the consuner is using

*

al r eady

*

*/

explicit acknow edgenent </ b>.

<p>

Records for each topic-partition must be acknow edged in the order they were returned from
{@ink #poll (Duration)}.

@aram record The record to acknow edge
@ar am type The acknow edge type which indicates whether it was processed successfully

@hrows Il egal Argunent Exception if the record being acknow edged doesn't neet the ordering requirenent
@hrows |11egal StateException if the record is not waiting to be acknow edged, or the consumer has

used inplicit acknow edgenent

voi d acknow edge(Consuner Recor d<K, V> record, Acknow edgeType type);

| **

*

*

*/

Commit the acknow edgenents for the records returned. If the consumer is using explicit acknow edgenent,
the acknow edgenents to comrit have been indicated using {@ink #acknow edge(Consuner Record)} or

{@ink #acknow edge(Consuner Record, Acknow edgeType)}. If the consuner is using inplicit acknow edgenent,
all the records returned by the latest call to {@ink #poll(Duration)} are acknow edged.

<p>

This is a synchronous commit and will block until either the conmit succeeds, an unrecoverable error is

encountered (in which case it is thrown to the caller), or the tineout expires.

@eturn A map of the results for each topic-partition for which delivery was acknow edged.
If the acknow edgenent failed for a topic-partition, an exception is present.

@hrows InterruptException If the thread is interrupted while bl ocked.
@hrows Kaf kaException for any other unrecoverable errors

Map<Topi cl dPartition, Optional <Kaf kaExcepti on>> conmmit Sync();

*/

Commit the acknow edgenments for the records returned. |If the consuner is using explicit acknow edgenent,
the acknow edgenents to commit have been indicated using {@ink #acknow edge(Consuner Record)} or

{@i nk #acknow edge(Consuner Record, Acknow edgeType)}. If the consuner is using inplicit acknow edgenent,
all the records returned by the latest call to {@ink #poll (Duration)} are acknow edged.

<p>

This is a synchronous commit and will block until either the conmit succeeds, an unrecoverable error is

encountered (in which case it is thrown to the caller), or the tinmeout expires.

@aram timeout The maxi num anmount of time to await conpletion of the acknow edgenent

@eturn A nmap of the results for each topic-partition for which delivery was acknow edged.
If the acknow edgenment failed for a topic-partition, an exception is present.

@hrows Il egal Argument Exception If the {@ode tineout} is negative.
@hrows I nterruptException If the thread is interrupted while bl ocked.
@ hrows Kaf kaException for any other unrecoverable errors

Map<Topi cl dPartition, Optional <Kaf kaException>> commit Sync(Duration tinmeout);

| **

*

*

*

*

*

*

*/

Commit the acknow edgenents for the records returned. If the consumer is using explicit acknow edgenent,
the acknow edgenents to comit have been indicated using {@ink #acknow edge(Consuner Record)} or

{@ink #acknow edge(Consumer Record, Acknow edgeType)}. |If the consumer is using inplicit acknow edgenent,
all the records returned by the latest call to {@ink #poll(Duration)} are acknow edged.

@hrows Kaf kaException for any other unrecoverable errors

voi d conm t Async();

| *x*

*

*

*

*/

Sets the acknow edge commit cal | back which can be used to handl e acknow edgenent conpl etion.

@ar am cal | back The acknow edge commit cal |l back

voi d set Acknowl edgeCommi t Cal | back(Acknowl edgeConmi t Cal | back cal | back) ;

| **

* Determines the client's unique client instance ID used for telemetry. This IDis unique to
* this specific client instance and will not change after it is initially generated.

* The IDis useful for correlating client operations with telenetry sent to the broker and
* to its eventual nonitoring destinations.

* <p>

* |f telemetry is enabled, this will first require a connection to the cluster to generate
* the unique client instance ID. This nethod waits up to {@ode tineout} for the consuner
* client to conplete the request.

* o <p>

* Cient telenetry is controlled by the {@ink Consuner Confi g#ENABLE_METRI CS_PUSH _CONFI G
* configuration option.

* @aramtinmeout The maxinumtinme to wait for consuner client to determne its client instance ID.
* The val ue nust be non-negative. Specifying a tineout of zero neans do not

* wait for the initial request to conplete if it hasn't already.

* @eturn The client's assigned instance id used for nmetrics collection.

* @hrows |1 egal Argunent Exception If the {@ode timeout} is negative.
* @hrows Illegal StateException If telenetry is not enabl ed because config ~{@ode enable.netrics. push}"”
* is set to "{@ode false}".

* @hrows InterruptException If the thread is interrupted while bl ocked.
* @hrows Kaf kaException If an unexpected error occurs while trying to determne the client

* instance 1D, though this error does not necessarily inply the
* consuner client is otherw se unusable.
*/

Uuid clientlnstanceld(Duration tineout);

/**

* CGet the nmetrics kept by the consuner

*/

Map<MetricNane, ? extends Metric> netrics();

* Close the consumer, waiting for up to the default timeout of 30 seconds for any needed cl eanup.
* This will commt acknow edgenents if possible within the default tineout.
* See {@ink #close(Duration)} for details. Note that {@ink #wakeup()} cannot be used to interrupt close.

* @hrows InterruptException If the thread is interrupted before or while this nmethod is called
* @hrows Kaf kaException for any other error during close

*/

void close();

* Tries to close the consuner cleanly within the specified tineout. This nethod waits up to

* {@ode tineout} for the consuner to conplete acknow edgenents and | eave the group.

* |f the consuner is unable to conplete acknow edgenents and gracefully | eave the group

* before the tineout expires, the consuner is force closed. Note that {@ink #wakeup()} cannot be
* used to interrupt close.

* @aramtinmeout The maxinumtinme to wait for consuner to close gracefully. The val ue nust be

* non-negative. Specifying a tineout of zero neans do not wait for pending requests to
conpl ete.

*

* @hrows Il egal Argunent Exception If the {@ode tineout} is negative.

* @hrows InterruptException If the thread is interrupted before or while this nmethod is called
* @hrows KafkaException for any other error during close

*/

voi d close(Duration tinmeout);

/**
* \Wake up the consuner. This nmethod is thread-safe and is useful in particular to abort a |ong poll.
* The thread which is blocking in an operation will throw {@ink WakeupExcepti on}.
* |f no thread is blocking in a method which can throw { @i nk WakeupExcepti on},
* the next call to such a method will raise it instead.
*/
voi d wakeup();

The following constructors are provided for Kaf kaShar eConsuner .

Method signature Description

Kaf kaShar eConsuner (Map Constructor
<String, Object> conf
i gs)

Kaf kaShar eConsuner (Pr | Constructor
operties properties)

Kaf kaShar eConsuner (Map Constructor
<String, Object> conf
igs,
Deseri al i zer <K> key
Deseri al i zer,
Deseri al i zer<V> val
ueDeseri al i zer)

Kaf kaShar eConsuner (Pr | Constructor
operties properties,
Deseri al i zer <K> key
Deseri al i zer,
Deseri al i zer <V> val
ueDeseri al i zer)

AcknowledgeCommitCallback

The new or g. apache. kaf ka. cl i ents. consuner . Acknow edgeConmi t Cal | back can be implemented by the user to execute when
acknowledgement completes. It is called on the application thread and is not permitted to called the methods of Kaf kaShar eConsuner with the exception
of Kaf kaShar eConsuner . wakeup() .

Method signature Description
voi d onConpl et e(Map<Topi cl dPartition, A callback method the user can implement to provide asynchronous
Set <Of f set AndMet adat a>> of fsets, Exception exception) handling of request completion.
Parameters:

offsets - A map of the offsets that this callback applies to.

exception - The exception thrown during processing of the request, or null
if the acknowledgement completed successfully.

Exceptions:

WakeupException - if KafkaShareConsumer.wakeup() is called.
InterruptException - if the calling thread is interrupted.
AuthorizationException - if not authorized to the topic or group.

KafkaException - for any other unrecoverable errors.

ConsumerRecord

Add the following method on the or g. apache. kaf ka. cl i ent. consuner. Consurer Record class.

Method signature Description

Opti onal <Short> deliveryCount() @ Getthe delivery count for the record if available.

The delivery count is available for records delivered using a share group and Opt i onal . enpt y() otherwise.

A new constructor is also added:

* Creates a record to be received froma specified topic and partition

* @aramtopic The topic this record is received from

* @arampartition The partition of the topic this record is received from

* @aramoffset The offset of this record in the corresponding Kafka partition

* @aramtinmestanp The tinestanp of the record.

* @aramtinmestanpType The tinestanp type

* @aram serializedKeySi ze The | ength of the serialized key

* @aram serializedVal ueSi ze The length of the serialized val ue

* @aram key The key of the record, if one exists (null is allowed)
* @aramval ue The record contents

* @aram headers The headers of the record

* @aram | eader Epoch Optional |eader epoch of the record (nmay be enpty for

I egacy record fornats)

* @aram del i veryCount Optional delivery count of the record (may be enpty when deliveries not counted)

*/

publ i c Consuner Record(String topic,
int partition,
| ong of fset,
long tinestanp,
Ti nest anpType ti nestanpType,
int serializedKeySize,
int serializedVal ueSi ze,
K key,
V val ue,
Headers headers,
Opt i onal <I nt eger > | eader Epoch,
Opti onal <Short > del i veryCount)

AcknowledgeType

The new or g. apache. kaf ka. cl i ents. consuner. Acknow edgeType enum distinguishes between the types of acknowledgement for a record

consumer using a share group.

Enum constant Description

ACCEPT (0) The record was consumed successfully

RELEASE (1) The record was not consumed successfully. Release it for another delivery attempt.

REJECT (2) The record was not consumed successfully. Reject it and do not release it for another delivery attempt.
AdminClient

Add the following methods on the or g. apache. kaf ka. cl i ent. adm n. Adm nC i ent interface.

Method signature

Al t er Shar eG oupOF f set sResult al t er ShareG oupOf f sets(String groupld,
Map<Topi cPartition, O fsetAndMetadata> of fsets)

Al t er ShareG oupOf f set sResul t al t er ShareG oupOf f set s(String groupld,
Map<Topi cPartition, O fset AndMetadata> of fsets, AlterShareG oupOffsetsOptions
options)

Del et eShar eG oupOf f set sResul t del et eShar eGroupOf fsets(String groupld,
Set <Topi cPartition> partitions)

Del et eShar eG oupOf f set sResul t del et eShar eGroupOf fsets(String groupld,
Set <Topi cPartition> partitions, DeleteShareG oupOfsetsOptions options)

Del et eShar eG oupResul t del et eShar eG oups(Col | ecti on<Stri ng> groupl ds)

Del et eShar eG oupResul t del et eShar eG oups(Col | ecti on<String> grouplds,
Del et eShar eG oupOpt i ons opti ons)

Descri beShar eGroupsResult descri beShareG oups(Col | ecti on<String> grouplds)

Description

Alter offset information for a share group.

Alter offset information for a share group.

Delete offset information for a set of
partitions in a share group.

Delete offset information for a set of
partitions in a share group.

Delete share groups from the cluster.
Delete share groups from the cluster.

Describe some share groups in the
cluster.

Descri beShar eGroupsResult descri beShareG oups(Col | ecti on<String> grouplds, Describe some share groups in the

Descri beShar eG oupsOpti ons opti ons) cluster.

Li st Shar eG oupOf f set sResul t 1i st ShareG oupOf f set s(Map<Stri ng, List the share group offsets available in

Li st ShareG oupOf f set sSpec> gr oupSpecs) the cluster for the specified share groups.

Li st Shar eG oupOf f set sResul t 1i st ShareG oupOf f set s(Map<Stri ng, List the share group offsets available in

Li st Shar eGr oupOf f set sSpec> gr oupSpecs, Li st ShareG oupOf fset sOptions options) the cluster for the specified share groups.

Li st Shar eGroupsResul t |i st ShareG oups() List the share groups available in the
cluster.

Li st Shar eG oupsResul t |i st ShareG oups(Li st ShareG oupsOpti ons options) List the share groups available in the
cluster.

Li st G- oupsResult 1ist G oups() List the groups available in the cluster.

Li st G oupsResult |istG oups(ListGoupsOptions options) List the groups available in the cluster.

The equivalence between the consumer group and share group interfaces is clear. There are some differences:

® Altering the offsets for a share group resets the Share-Partition Start Offset for topic-partitions in the share group (share-partitions)
® The members of a share group are not assigned distinct sets of partitions
® A share group has only three states - EMPTY , STABLE and DEAD

Here are the method signatures.

| **

* Alters offsets for the specified group. In order to succeed, the group nust be enpty.
* <p>This is a conveni ence nethod for {@ink #alterShareG oupOffsets(String, Mp,
Al ter ShareG oupOF fsetsOptions)} with default options.
* See the overload for nore details.
*
* @aram groupld The group for which to alter offsets.
* @aramoffsets A map of offsets by partition with associ ated netadat a.
* @eturn The AlterShareG oupOffsetsResult.
*/
default AlterShareG oupOfsetsResult alterShareG oupOffsets(String groupld, Map<TopicPartition,
O f set AndMet adat a> of fsets) {
return al terShareG oupOffsets(groupld, offsets, new AlterShareG oupOfsetsOptions());
}

| **

* Alters offsets for the specified group. In order to succeed, the group nust be enpty.

*

* <p>This operation is not transactional so it may succeed for sone partitions while fail for others.

*

* @aram groupld The group for which to alter offsets.

* @aramoffsets A map of offsets by partition with associated netadata. Partitions not specified in the
map are ignored.

* @aram options The options to use when altering the offsets.

* @eturn The AlterShareG oupOFfsetsResult.

*/

Al t er Shar eG oupOF f set sResult al t er ShareG oupOf fsets(String groupld, Map<TopicPartition, O fsetAndMetadata>
of fsets, AlterShareG oupOffsetsOptions options);

/**

* Delete offsets for a set of partitions in a share group with the default

* options. This will succeed at the partition level only if the group is not actively

* subscribed to the correspondi ng topic.

* <p>This is a conveni ence nethod for {@i nk #del et eShareG oupOf fsets(String, Map,
Del et eShareGroupOf f set sOptions)} with default options.

* See the overload for nore details.

*

* @eturn The Del et eShareG oupOf f set sResul t.

*/

default Del et eShareG oupOf f set sResult del et eShareG oupCOf fset s(String groupld, Set<TopicPartition>
partitions) {

return del et eShareG oupOF f set s(groupld, partitions, new Del et eShareG oupOf fsetsOptions());
}

/**
* Delete offsets for a set of partitions in a share group. This will
* succeed at the partition level only if the group is not actively subscribed
* to the correspondi ng topic.
*
* @aramoptions The options to use when deleting offsets in a share group.
* @eturn The Del et eShareG oupOf f set sResul t .
*/
Del et eShar eGroupOf f set sResul t del et eShar eG oupOf f set s(String groupld,
Set <Topi cPartition> partitions,
Del et eShar eGr oupOf f set sOpti ons options);

/**
* Del ete share groups fromthe cluster with the default options.
*
* <p>This is a conveni ence nethod for {@ink #del et eShareG oups(Col | ecti on<Stri ng>,
Del et eShar eGroupsOptions)} with default options.
* See the overload for nore details.
*
* @aram grouplds The IDs of the groups to delete.
* @eturn The Del et eShareG oupsResul t.
*/
default Del et eShareGroupsResult del et eShar eGroups(Col | ecti on<String> grouplds) {
return del et eShareG oups(grouplds, new Del et eShareG oupsOptions());
}

/**

* Delete share groups fromthe cluster.

*

* @aram grouplds The IDs of the groups to delete.

* @aram options The options to use when del eting a share group.

* @eturn The Del et eShareG oupsResul t.

*/

Del et eShar eGroupsResul t del et eShar eG oups(Col | ecti on<String> grouplds, Del eteShareG oupsOpti ons options);

/*-k
* Describe sone share groups in the cluster, with the default options.
* <p>This is a conveni ence nethod for {@ink #descri beShareG oups(Col |l ection, DescribeShareG oupsOptions)}
* with default options. See the overload for nore details.
* @aram grouplds The IDs of the groups to describe.
* @eturn The DescribeShareG oupsResul t.
*/
default DescribeShareG oupsResult descri beShareG oups(Collection<String> grouplds) {
return descri beShareG oups(grouplds, new Descri beShareG oupsOptions());

}

/**
* Describe sone share groups in the cluster.
*
* @aram grouplds The IDs of the groups to descri be.
* @aramoptions The options to use when describing the groups.
* @eturn The DescribeShareG oupsResul t.
*/
Descri beShar eG oupsResul t descri beShar eG oups(Col | ecti on<String> grouplds,
Descri beShar eG oupsOpti ons options);

/**
* List the share group offsets available in the cluster for the specified share groups with the default
options.

* <p>This is a conveni ence nethod for {@ink #listShareG oupOffsets(Map, ListShareG oupOffsetsOptions)}

* to list offsets of all partitions for the specified share groups with default options.

* @ar am groupSpecs Map of share group ids to a spec that specifies the topic partitions of the group to
list offsets for.

* @eturn The ListShareG oupOf fsetsResult

*/

default ListShareG oupOffsetsResult |istShareG oupOffsets(Map<String, ListShareG oupOfsetsSpec>
groupSpecs) {

return |istShareG oupO fsets(groupSpecs, new Li st ShareG oupOffsetsOptions());
}

/*-k

* List the share group offsets available in the cluster for the specified share groups.

* @ar am groupSpecs Map of share group ids to a spec that specifies the topic partitions of the group to
list offsets for.

* @aramoptions The options to use when listing the share group offsets.

* @eturn The Li st ShareG oupOF fset sResul t

*/

Li st ShareG oupOf f set sResul t |i st ShareG oupOf f set s(Map<String, ListShareG oupOffsetsSpec> groupSpecs,
Li st ShareG oupOf f set sOpti ons options);

/**
* List the share groups available in the cluster with the default options.
*
* <p>This is a conveni ence nethod for {@ink #listShareG oups(ListShareG oupsOptions)} with default
options.
* See the overload for nore details.
*
* @eturn The ListShareG oupsResult.
*/
default ListShareG oupsResult |istShareGoups() {
return |istShareG oups(new Li st ShareG oupsOptions());
}

/*-k

* List the share groups available in the cluster.

* @aram options The options to use when listing the share groups.

* @eturn The Li st ShareG oupsResul t.

*/

Li st ShareG oupsResul t |i st ShareG oups(Li st ShareG oupsOptions options);

/*-k
* List the groups available in the cluster with the default options.
* <p>This is a convenience nethod for {@ink #listGoups(ListGoupsOptions)} with default options.
* See the overload for nore details.
* @eturn The ListGoupsResult.
*/
default ListGoupsResult |istGoups() {
return |istGoups(new ListG oupsOptions());
}

/**
* List the groups available in the cluster.
*
* @aramoptions The options to use when listing the groups.
* @eturn The ListG oupsResult.
*/
Li st GroupsResult |istG oups(ListG oupsOptions);

AlterShareGroupOffsetsResult

package org. apache. kaf ka. cli ents. admi n;

/**
* The result of the {@ink Adni n#al t er ShareG oupOf fsets(String groupld, Map<TopicPartition,
O f set AndMet adat a>), Al ter ShareG oupOffsetsOptions)} call.
* <p>
* The APl of this class is evolving, see {@ink Admin} for details.
*/
@nterfaceStability. Evol vi ng
public class AlterShareG oupOfsetsResult {

/**

* Return a future which succeeds if all the alter offsets succeed.

*/

publ i c Kaf kaFuture<Void> all () {

}

/**

* Return a future which can be used to check the result for a given partition.
*/

publ i c Kaf kaFut ure<Voi d> partitionResult(final TopicPartition partition) {

}

AlterShareGroupOffsetsOptions

package org. apache. kaf ka. cli ent. adm n;

/**
* Options for the {@ink Adm n#al t er ShareG oupOffsets(String groupld, Map<TopicPartition, OFfsetAndMetadata>),
Al t er ShareG oupOf f set sOptions)} call.
* o<p>
* The APl of this class is evolving, see {@ink Adnmin} for details.
*/
@nterfaceStability. Evol ving
public class AlterShareG oupOfsetsOptions extends Abstract Opti ons<Alter ShareG oupOf fset sOpti ons> {
}

DeleteShareGroupOffsetsResult

package org. apache. kaf ka. cl i ents. admi n;

/**
* The result of the {@ink Adni n#del et eShareG oupOf fsets(String, Set<TopicPartition>,
Del et eShar eGr oupOf f set sOptions)} call.
* <p>
* The APl of this class is evolving, see {@ink Adm n} for details.
*/
@nterfaceStability. Evol ving
public class Del et eShareG oupOf f set sResult {

/**

* Return a future which succeeds only if all the del etions succeed.

*/

publ i c Kaf kaFuture<Voi d> all () {

}

/**

* Return a future which can be used to check the result for a given partition.
*/

publ i c Kaf kaFut ure<Voi d> partitionResult(final TopicPartition partition) {

}

DeleteShareGroupOffsetsOptions

package org. apache. kaf ka. cli ent. adm n;

/**
* Options for the {@ink Adm n#del et eShar eGroupOf f sets(String, Set<TopicPartition>,
Del et eShar eGr oupOf f set sOptions)} call.
* <p>
* The APl of this class is evolving, see {@ink Admin} for details.
*/
@nterfaceStability. Evol vi ng
public class Del et eShareG oupOf f set sOpti ons ext ends Abstract Opti ons<Del et eShar eG oupOf f set sOpti ons> {

}

DeleteShareGroupsResult

package org. apache. kaf ka. cl i ents. admi n;

/**

* The result of the {@ink Adm n#del et eShareG oups(Col | ecti on<String>, Del eteShareG oupsOptions)} call.
* <p>

* The APl of this class is evolving, see {@ink Admin} for details.

*/

@nterfaceStability. Evol ving
public class Del et eShareG oupsResult {

/**

* Return a future which succeeds only if all the del etions succeed.

*/

publ i c Kaf kaFuture<Voi d> all () {

}

/**

* Return a map fromgroup id to futures which can be used to check the status of individual deletions.
*/

public Map<String, KafkaFuture<Voi d>> del etedG oups() {

}

DeleteShareGroupsOptions

package org. apache. kaf ka. cli ent. adm n;

/**

* Options for the {@ink Adm n#del et eShareG oups(Col | ecti on<String>, Del eteShareG oupsOptions)} call.
* <p>

* The APl of this class is evolving, see {@ink Admin} for details.

*/

@nterfaceStability. Evol ving
public class Del et eShareG oupsOpti ons extends Abstract Opti ons<Del et eShar eG oupsOpti ons> {

}

DescribeShareGroupsResult

package org. apache. kaf ka. cli ents. admi n;

/**

* The result of the {@ink Adm n#descri beShareG oups(Col | ection<String>, DescribeShareG oupsOptions)} call.
* o<p>

* The APl of this class is evolving, see {@ink Adnmin} for details.

*/

@nterfaceStability. Evol ving
public class DescribeShareG oupsResult {

/**
* Return a future which yields all ShareG oupDescription objects, if all the describes succeed.
*/
publ i c Kaf kaFut ure<Map<String, ShareG oupDescription>> all() {
}
/**
* Return a map fromgroup id to futures which yield group descriptions.
*/
public Map<String, KafkaFuture<ShareG oupDescription>> describedG oups() {
}

ShareGroupDescription

This class does indeed reuse the Menber Descri pti on class intended for consumer groups. It is sufficiently general to work for share groups also.

package org. apache. kaf ka. cli ent. adm n;

i nport org. apache. kaf ka. coomon. Node;
i nport org. apache. kaf ka. coomon. Shar eGr oupSt at e;
i mport org. apache. kaf ka. conmon. acl . Acl Oper ati on;

/*-k
* A detail ed description of a single share group in the cluster.
* <p>
* The APl of this class is evolving, see {@ink Admin} for details.
*/
@nterfaceStability. Evol ving
public class ShareG oupDescription {
publ i c ShareG oupDescription(String groupld, Collection<MenberDescription> nmenbers, ShareG oupState state,
Node coordinator);
publ i c ShareG oupDescription(String groupld, Collection<MenberDescription> nmenbers, ShareG oupState state,
Node coordinator, Set<Acl Operation> authorizedQperations);

/**
* The id of the share group.
*
/
public String groupld();

/**

* Alist of the nenbers of the share group.

*/

public Col |l ecti on<MenberDescri ption> nmenbers();

/**

* The share group state, or UNKNOW if the state cannot be parsed.
*/

public ShareGoupState state();

/**

* The share group coordinator, or null if the coordinator is not known.
*/

publ i c Node coordinator();

/**
* The authorized operations for this group, or null if that infornmation is not known.
*
/
public Set <Acl Operation> authorizedOperations();

DescribeShareGroupsOptions

package org. apache. kaf ka. cli ent. adm n;

/**
* Options for {@ink Adm n#descri beShareG oups(Col | ection<String>, DescribeShareG oupsOptions)}.
* The APl of this class is evolving, see {@ink Admi n} for details.
*/
@nterfaceStability. Evol ving
public class DescribeShareG oupsOptions extends Abstract Opti ons<Descri beShareG oupsOpti ons> {
public Descri beShareG oupsOpti ons incl udeAut hori zedOper ati ons(bool ean i ncl udeAut hori zedOper ati ons);

publ i c bool ean incl udeAut hori zedOperations();

ListShareGroupOffsetsResult

The offset returned for each topic-partition is the share-partition start offset (SPSO).

package org. apache. kaf ka. cli ents. admi n;

/**
* The result of the {@ink Adm n#li st ShareG oupOf f set s(Map<String, ListShareG oupOffsetsSpec>,
Li st ShareG oupOf fset sOptions)} call.
* <p>
* The APl of this class is evolving, see {@ink Admin} for details.
*/
@nterfaceStability. Evol vi ng
public class ListShareGoupOfsetsResult {
/**
* Return a future which yields all Mp<String, Mp<TopicPartition, OfsetAndMetadata> objects, if requests
for all the groups succeed.

*/

publ i ¢ Kaf kaFut ure<Map<String, Map<TopicPartition, OfsetAndMetadata>>> all () {

}

/**

* Return a future which yields a map of topic partitions to O f set AndMet adata obj ects for the specified
group.

*/

publ i c Kaf kaFut ur e<Map<Topi cPartition, O fset AndMetadata>> partitionsToOf fset AndMet adata(String groupld) {
}

ListShareGroupOffsetsOptions

package org. apache. kaf ka. cli ent. adm n;

/**
* Options for {@ink Adm n#li st ShareG oupOf f sets(Map<String, ListShareG oupOrfsetsSpec>,
Li st ShareG oupOf f set sOptions)}.
* <p>
* The APl of this class is evolving, see {@ink Admin} for details.
*/
@nterfaceStability. Evol ving
public class ListShareG oupOfsetsOptions extends Abstract Options<Li st ShareG oupOf f set sOpti ons> {

}

ListShareGroupOffsetsSpec

package org. apache. kaf ka. client. adm n;

/**

* Specification of share group offsets to list using {@ink Adnm n#l i st ShareG oupOf fsets(Map<String,
Li st Shar eG oupOf f set sSpec>, Li st ShareG oupOf f set sOptions)}.

* o<p>

* The APl of this class is evolving, see {@ink Adnmin} for details.

*/

@nterfaceStability. Evol ving

public class ListShareG oupOfsetsSpec {

public ListShareG oupOr f set sSpec();

/**

* Set the topic partitions whose offsets are to be listed for a share group.

*/

Li st Shar eG oupOf f set sSpec topicPartitions(Collection<TopicPartition> topicPartitions);

/**

* Returns the topic partitions whose offsets are to be listed for a share group.
*/

Col | ecti on<Topi cPartition> topicPartitions();

}

ListShareGroupsResult

package org. apache. kaf ka. cli ents. admi n;

/**

* The result of the {@ink Adni n#li st ShareG oups(Li st ShareG oupsOptions)} call.
* o<p>

* The APl of this class is evolving, see {@ink Adnmin} for details.

*/

@nterfaceStability. Evol ving
public class ListShareG oupsResult {
/**
* Returns a future that yields either an exception, or the full set of share group listings.
*/
publ i ¢ Kaf kaFut ure<Col | ecti on<Shar eG oupLi sting>> all () {
}

/**
* Returns a future which yields just the valid listings.
*/
publ i ¢ Kaf kaFut ure<Col | ecti on<Shar eG oupLi sting>> valid() {
}

/**

* Returns a future which yields just the errors which occurred.
*/

publ i c Kaf kaFut ure<Col | ecti on<Thr owabl e>> errors() {

}

ShareGroupListing

package org. apache. kaf ka. cli ent. adm n;

i nport org. apache. kaf ka. coomon. Shar eGr oupSt at e;

/**
* Alisting of a share group in the cluster.
* <p>
* The APl of this class is evolving, see {@ink Admi n} for details.
*/
@nterfaceStability. Evol ving
public class ShareG oupListing {
publ i c ShareG oupListing(String groupld);
publ i c ShareG oupListing(String groupld, Optional <ShareG oupState> state);

/**
* The id of the share group.
*
/
public String groupld();

/**
* The share group state.
*/
public Optional <ShareG oupState> state();

ListShareGroupsOptions

package org. apache. kaf ka. cli ent. adm n;

i nport org. apache. kaf ka. cormon. Shar eG oupSt at e;

* %
/* Options for {@ink Adm n#li st ShareG oups(Li st ShareG oupsOptions)}.
*
* The APl of this class is evolving, see {@ink Admin} for details.
@;terfaceSt ability. Evol ving
public class ListShareG oupsOptions extends Abstract Opti ons<Li st ShareG oupsOpti ons> {
* %
/* If states is set, only groups in these states will be returned. Gtherwi se, all groups are returned.
*
pui)l i c ListShareG oupsOptions inStates(Set<ShareG oupState> states);

/**

* Return the list of States that are requested or enpty if no states have been specified.
*/

public Set<ShareG oupState> states();

ListGroupsResult

package org. apache. kaf ka. cl i ents. admi n;

/**

* The result of the {@ink Adm n#listG oups(ListG oupsOptions)} call.
* <p>

* The APl of this class is evolving, see {@ink Admi n} for details.
*/

@nterfaceStability. Evol ving
public class ListGoupsResult {

/**

* Returns a future that yields either an exception, or the full set of group listings.
*/

publ i ¢ Kaf kaFut ure<Col | ecti on<G ouplListing>> all () {

}

/**
* Returns a future which yields just the valid listings.
*/

publ i ¢ Kaf kaFut ure<Col | ecti on<G oupLi sting>> valid() {

}

/**
* Returns a future which yields just the errors which occurred.
*/

publ i ¢ Kaf kaFut ure<Col | ecti on<Thr owabl e>> errors() {

}

GrouplListing

package org. apache. kaf ka. cli ent. adm n;

i nport org. apache. kaf ka. cormon. Shar eG oupSt at e;

/**

* Alisting of a group in the cluster.

* <p>

* The APl of this class is evolving, see {@ink Admin} for details.
*/

@nterfaceStability. Evol ving
public class G oupListing {
public GoupListing(String groupld, G oupType type);
/**
* The id of the group.
*/
public String groupld();
/**
* The group type.
*/
public G oupType type();

ListGroupsOptions

package org. apache. kaf ka. client.adm n;

i mport org. apache. kaf ka. common. G oupType;

| **

* Options for {@ink Admi n#listG oups(ListG oupsOptions)}.

*

* The APl of this class is evolving, see {@ink Admin} for details.
*/
@nterfaceStability. Evol ving
public class ListGoupsOptions extends Abstract Opti ons<Li st G oupsOpti ons> {

/**

* |f types is set, only groups of these types will be returned. OGtherw se, all groups are returned.
*/

public ListG oupsOptions types(Set<G oupType> types);

/**

* Return the list of types that are requested or enpty if no types have been specified.
*/

public Set <G oupType> types();

GroupType
Another case is added to the or g. apache. kaf ka. conmon. Gr oupType enum:

Enum constant Description

SHARE(" share") | Share group

ShareGroupState

A new enum or g. apache. kaf ka. comon. Shar eG oupSt at e is added:

Enum constant
DEAD

EMPTY

STABLE

UNKNOWN

Its definition follows the pattern of Consumer G oupSt at e with fewer states.

Command-line tools

kafka-share-groups.sh

A new tool called kaf ka- shar e- gr oups. sh is added for working with share groups. It has the following options:

Option
--all-topics
--bootstrap-server
<String: server to
connect to>
--command-config
<String: command
config property file>
--delete
--delete-offsets
--describe
--dry-run

--execute

--group <String: share
group>

--help
--list
--members

--offsets

--reset-offsets
--state [String]

--timeout <Long:
timeout (ms)>

--to-datetime <String:
datetime>
--to-earliest
--to-latest

--topic <String: topic>

--version

Here are some examples.

Description

Consider all topics assigned to a group in the “reset-offsets™ process.

REQUIRED: The server(s) to connect to.

Property file containing configs to be passed to Admin Client.

Pass in groups to delete topic partition offsets over the entire share group. For instance --group g1 --group g2
Delete offsets of share group. Supports one share group at the time, and multiple topics.

Describe share group and list offset lag (number of records not yet processed) related to given group.

Only show results without executing changes on share groups. Supported operations: reset-offsets.

Execute operation. Supported operations: reset-offsets.

The share group we wish to act on.

Print usage information.
List all share groups.
Describe members of the group. This option may be used with the '--describe" option only.

Describe the group and list all topic partitions in the group along with their offset lag. This is the default sub-action of and
may be used with the '--describe’ option only.

Reset offsets of share group. Supports one share group at a time, and instances must be inactive.

When specified with '--describe’, includes the state of the group. When specified with "--list', it displays the state of all groups.
It can also be used to list groups with specific states.

The timeout that can be set for some use cases. For example, it can be used when describing the group to specify the
maximum amount of time in milliseconds to wait before the group stabilizes (when the group is just created, or is going
through some changes). (default: 5000)

Reset offsets to offset from datetime. Format: 'YYYY-MM-DDTHH:mm:SS.sss'.

Reset offsets to earliest offset.
Reset offsets to latest offset.
The topic whose share group information should be deleted or topic which should be included in the reset offset process.

Display Kafka version.

To display a list of all share groups:

$ kaf ka-share-groups. sh --bootstrap-server |ocal host: 9092 --1|ist

To delete the information for topic T1 from inactive share group S1 , which essentially resets the consumption of this topic in the share group:

$ kaf ka- share-groups. sh --bootstrap-server |ocal host: 9092 --group Sl --topic Tl --delete-offsets

To set the starting offset for consuming topic T1 in inactive share group S1 to a specific date and time:

$ kaf ka-share-groups. sh --bootstrap-server |ocalhost:9092 --group S1 --topic Tl --reset-offsets --to-datetine 1999
-12-31T23:57: 00. 000 --execute

kafka-console-share-consumer.sh

A new tool called kaf ka- consol e- shar e- consuner. sh is added for reading data from Kafka topics using a share group and outputting to standard
output. This is similar to kaf ka- consol e- consuner . sh but using a share group and supporting the various acknowledge modes. It has the following
options:

Option Description

--bootstrap-server <String: = REQUIRED: The server(s) to connect to.
server to connect to>

--consumer-config Consumer config properties file. Note that [consumer-property] takes precedence over this config.
<String: config file>

--consumer-property Consumer property in the form key=value.
<String: consumer_prop>

--enable-systest-events Log lifecycle events of the consumer in addition to logging consumed messages. (This is specific for system tests.)
--formatter <String: class> = The name of a class to use for formatting Kafka messages for display. (default: kafka.tools.DefaultMessageFormatter)

--formatter-config <String: = Config properties file to initialize the message formatter. Note that [property] takes precedence of this config.
config file>

--group <String: share The share group id of the consumer. (default: share)
groud id>
--help Print usage information.

--key-deserializer <String: =~ The name of the class to use for deserializing keys.
deserializer for keys>

--max-messages <Integer: = The maximum number of messages to consume before exiting. If not set, consumption is continual.
num_messages>

--property <String: prop> The properties to initialize the message formatter. Default properties include:
print.timestamp=true|false
print.key=true|false
print.offset=true|false
print.delivery=truelfalse
print.partition=true|false
print.headers=true|false
print.value=true|false
key.separator=<key.separator>
line.separator=<line.separator>
headers.separator=<line.separator>
null.literal=<null.literal>
key.deserializer=<key.deserializer>
value.deserializer=<value.deserializer>
header.deserializer=<header.deserializer>

Users can also pass in customized properties for their formatter; more specifically, users can pass in properties keyed with
'key.deserializer.', 'value.deserializer.' and 'headers.deserializer.' prefixes to configure their deserializers.

--reject If specified, messages are rejected as they are consumed.
--reject-message-on-error If there is an error when processing a message, reject it instead of halting.

--release If specified, messages are released as they are consumed.

--timeout-ms <Integer: If specified, exit if no message is available for consumption for the specific interval.

timeout_ms>
--topic <String: topic> REQUIRED: The topic to consume from.
--value-deserializer

<String: deserializer for
values>

The name of the class to use for deserializing values.

--version Display Kafka version.

kafka-producer-perf-test.sh

The following enhancements are made to the kaf ka- pr oducer - per f -t est . sh tool. The changes are intended to make this tool useful for observing
the operation of share groups by generating a low message rate with predictable message payloads.

Option Description
--throughput THROUGHPUT | (Existing option) Enhanced to permit fractional rates, such as 0.5 meaning 1 message every 2 seconds.

--payload-monotonic payload is monotonically increasing integer.

Configuration

Broker configuration

Configuration
group. share. enabl e
group. share. delivery.
count.limt

group. share. record.
| ock. duration. ns

group. share. record.
| ock. durati on. max. ns

group. share. record.
lock.partition. limt

group. share. sessi on.
tineout. ns

group. share. mn.
session.tinmeout.ns

group. share. max.
session.tinmeout.ns

group. share. heartbeat .
interval . ms

group. share. mn.
heartbeat.interval . ns

group. share. max.
heartbeat.interval.ns

group. shar e. max. gr oups

group. share. max. si ze

group. share. assi gnors

Group configuration

The following dynamic group configuration properties are added. These are properties for which it would be problematic to have consumers in the same

Description

Whether to enable share groups on the broker.

The maximum number of delivery attempts for a record
delivered to a share group.

Share-group record acquisition lock duration in milliseconds.
Share-group record acquisition lock maximum duration in
milliseconds.

Share-group record lock limit per share-partition.

The timeout to detect client failures when using the group
protocol.

The minimum session timeout.

The maximum session timeout.

The heartbeat interval given to the members.

The minimum heartbeat interval.

The maximum heartbeat interval.

The maximum number of share groups.

The maximum number of consumers that a single share group

can accommodate.

The server-side assignors as a list of full class names. In the
initial delivery, only the first one in the list is used.

Values

Default f al se while the feature is being developed.

Will become t r ue in a future release.

Default 5, minimum 2, maximum 10

Default 30000 (30 seconds), minimum 1000 (1
second), maximum 60000 (60 seconds)

Default 60000 (60 seconds), minimum 1000 (1

second), maximum 3600000 (1 hour)

Default 200, minimum 100, maximum 10000

Default 45000 (45 seconds)

Default 45000 (45 seconds)

Default 60000 (60 seconds)

Default 5000 (5 seconds)

Default 5000 (5 seconds)

Default 15000 (15 seconds)

Default 10, minimum 1, maximum 100

Default 200, minimum 10, maximum 1000

A list of class names. Default " or g. apache.
server. group. share. Si npl eAssi gnor"

share group using different behavior if the properties were specified in the consumer clients themselves.

Configuration

group. share.
i sol ation.
| evel

group. share.
auto. of f set .
reset

group. share.
record. | ock.
duration. ns

group. type

Description

Controls how to read records written transactionally. If setto " r ead_conmmi t t ed",
the share group will only deliver transactional records which have been committed.
If setto " read_unconmi tted", the share group will return all messages, even
transactional messages which have been aborted. Non-transactional records will be
returned unconditionally in either mode.

What to do when there is no initial offset in Kafka or if the current offset does not
exist any more on the server:

® "earliest" :automatically reset the offset to the earliest offset

® "|atest" :automatically reset the offset to the latest offset

Record acquisition lock duration in milliseconds.

Ensures that a newly created group has the specified group type.

Consumer configuration

The existing consumer configurations apply for share groups with the following exceptions:

Kafka protocol changes

This KIP introduces the following new APIs:

Error codes

Shar eG oupHear t beat - for consumers to form and maintain share groups

Shar eG oupDescr i be - for describing share groups

Shar eFet ch - for fetching records from share-partition leaders

Shar eAcknow edge - for acknowledging delivery of records with share-partition leaders
Al t er Shar eG oupOr f set s - for altering the share-partition start offsets for the share-partitions in a share group
Del et eShar eG oupO f set s - for deleting the offsets for the share-partitions in a share group

Descri beShar eG oupOf f set s - for describing the offsets for the share-partitions in a share group

This KIP adds the following error codes the Kafka protocol.

Values

Valid values "read_commi tted" and"rea
d_unconmi tted" (default)

Valid values "I at est" (default) and " ear |
iest”

null, which uses the cluster configuration gr o
up. share.record. | ock. duration. s,
minimum 1000, maximum limited by the
cluster configuration gr oup. share.
record. | ock. durati on. nax. ns

Valid values: " consuner" or"share"

aut 0. of f set . reset : this is handled by a dynamic group configuration gr oup. shar e. aut 0. of f set . reset
enabl e. auto. commit and aut o. conmi t. i nterval . nms : share groups do not support auto-commit

i sol ation. | evel :thisis handled by a dynamic group configuration gr oup. share. i sol ati on. | evel
partition.assi gnment. strategy : share groups do not support client-side partition assignors

i nterceptor.classes :interceptors are not supported

® | NVALI D_RECORD_STATE - The record state is invalid. The acknowledgement of delivery could not be completed.

ShareGroupHeartbeat API

The ShareGroupHeartbeat API is used by share group consumers to form a group. The API allows members to advertise their subscriptions and their
state. The group coordinator uses it to assign partitions to and revoke partitions from members. This API is also used as a liveness check.

Request schema

The member must set all the top-level fields when it joins for the first time or when an error occurs. Otherwise, it is expected only to fill in the fields which
have changed since the last heartbeat.

"api Key": TBD,

"type": "request",

"listeners": ["broker"],

"name": "ShareG oupHeartbeat Request ",

"val i dVersions": "0",
"fl exi bl eVersions": "0+",
"fields": [
{ "name": "Goupld", "type": "string", "versions": "O+", "entityType": "groupld",
"about": "The group identifier." },
{ "nanme": "Menberld", "type": "string", "versions": "O0+",
"about": "The menber |ID generated by the coordinator. The nenber |D nust be kept during the entire
lifetine of the nmenber." },
{ "name": "MenberEpoch", "type": "int32", "versions": "0+",
"about": "The current nmenber epoch; 0 to join the group; -1 to |leave the group." },
{ "nanme": "Rackld", "type": "string", "versions": "O0+", "nullableVersions": "0+", "default": "null",
“about": "null if not provided or if it didn't change since the |ast heartbeat; the rack I D of consumer
ot herwi se." },
{ "nanme": "Rebal anceTi meout Ms", "type": "int32", "versions": "O+", "default": -1,
"about": "-1 if it didn't chance since the | ast heartbeat; the maximumtinme in mlliseconds that the
coordinator will wait on the nenber to revoke its partitions otherwise." },
{ "name": "SubscribedTopi cNanes", "type": "[]string", "versions": "0+", "nullabl eVersions": "0+",
"default": "null",
"about": "null if it didn't change since the |ast heartbeat; the subscribed topic nanmes otherw se." }
]

Response schema

The group coordinator will only send the Assignment field when it changes.

"api Key": TBD,

"type": "response",

"nane": "ShareG oupHeart beat Response",
"val i dVersions": "0",

"fl exi bl eVersi ons": "0+",

/1 Supported errors:

/1 - GROUP_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - NOT_COORDI NATOR (version 0+)

// - COORDI NATOR_NOT_AVAI LABLE (version 0+)

/1 - COORDI NATOR _LOAD_| N_PROGRESS (version 0+)
/1 - 1 NVALI D_REQUEST (version 0+)

/1 - UNKNOWN_MEMBER_I D (version 0+)

/1 - GROUP_NMAX_SI ZE_REACHED (version 0+)
"fields": [
{ "name": "ThrottleTi meMs", "type": "int32", "versions": "O0O+",
"about": "The duration in mlliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
{ "name": "ErrorCode", "type": "int1l6", "versions": "O0+",
"about": "The top-level error code, or O if there was no error" },
{ "name": "ErrorMessage", "type": "string", "versions": "0+", "nullabl eVersions": "0+", "default": "null",
"about": "The top-level error nessage, or null if there was no error." },
{ "name": "Menberld", "type": "string", "versions": "O0+", "nullableVersions": "0+", "default": "null",
"about": "The menber |ID generated by the coordinator. Only provi ded when the nmenber joins with
Menber Epoch == 0." },
{ "name": "Menber Epoch", "type": "int32", "versions": "0+",
"about": "The nmenber epoch." },
{ "name": "Heartbeatlnterval 5", "type": "int32", "versions": "O+",
"about": "The heartbeat interval in mlliseconds." },
{ "name": "Assignment", "type": "Assignnent", "versions": "O0+", "nullableVersions": "0+", "default": "null",
"about": "null if not provided; the assignnent otherwise.", "fields": [
{ "name": "Error", "type": "int8", "versions": "O0+",
"about": "The assigned error." },
{ "name": "AssignedTopicPartitions", "type": "[]TopicPartitions", "versions": "0+",
"about": "The partitions assigned to the nenber." }
1}
1,
"commonStructs": [
{ "name": "TopicPartitions", "versions": "0+", "fields": [
{ "name": "Topicld", "type": "uuid", "versions": "O0+",
"about": "The topic ID." },
{ "name": "Partitions", "type": "[]int32", "versions": "0+",
"about": "The partitions." }
1}
]

ShareGroupDescribe API

The ShareGroupDescribe API is used to describe share groups.

Request schema

"api Key": NN,

"t
“

ype": "request",
isteners": ["broker"],

"name": "ShareG oupDescribeRequest",

"val i dVersions": "0",
"fl exi bl eVersions": "0+",
"fields": [
{ "name": "G ouplds", "type": "[]string", "versions": "O+", "entityType": "groupld",
"about": "The ids of the groups to describe" },
{ "name": "IncludeAuthorizedOperations", "type": "bool", "versions": "O0+",
"about": "Whether to include authorized operations." }
]

Response schema

{
"api Key": NN,
"type": "response",
"name": "ShareG oupDescri beResponse”,
"val i dVersions": "0",
"fl exi bl eVersions": "0+",
/] Supported errors:
/1 - GROUP_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - NOT_COORDI NATOR (version 0+)
/1 - COORDI NATOR_NOT_AVAI LABLE (version 0+)
/1 - COORDI NATOR_LOAD | N_PROGRESS (version 0+)
/1 - 1 NVALI D_REQUEST (version 0+)
/1 - 1 NVALI D_GROUP_I D (version 0+)
/1 - GROUP_I D_NOT_FQUND (version 0+)
"fields": [
{ "name": "ThrottleTi neMs", "type": "int32", "versions": "0+",
"about": "The duration in mlliseconds for which the request was throttled due to a quota violation
zero if the request did not violate any quota." },
{ "name": "Goups", "type": "[]DescribedG oup", "versions": "O0+",
"about": "Each described group.",
"fields": [
{ "name": "ErrorCode", "type": "intl1l6", "versions": "O0+",
"about": "The describe error, or O if there was no error." },
{ "name": "ErrorMessage", "type": "string", "versions": "0+", "nullabl eVersions": "0+", "default":
"null",
"about": "The top-level error nessage, or null if there was no error." },
{ "name": "Groupld", "type": "string", "versions": "0+", "entityType": "groupld",
"about": "The group ID string." },
{ "name": "GroupState", "type": "string", "versions": "0+",
"about": "The group state string, or the enpty string." },
{ "name": "G oupEpoch", "type": "int32", "versions": "O0+",
"about": "The group epoch." },
{ "name": "Assignment Epoch", "type": "int32", "versions": "O0+",
"about": "The assignnent epoch." },
{ "name": "AssignorNanme", "type": "string", "versions": "0+",
"about": "The sel ected assignor." },
{ "name": "Menbers", "type": "[]Menber", "versions": "0+",
"about": "The nmenbers.",
"fields": [
{ "name": "Menberld", "type": "string", "versions": "O+",
"about": "The menber ID." },
{ "name": "Instanceld", "type": "string", "versions": "0+", "null abl eVersions": "0+", "defaul
"null",
"about": "The nmenber instance ID. " },
{ "name": "Rackld", "type": "string", "versions": "O0+", "nullableVersions": "0+", "default":
"about": "The nmenber rack ID." },
{ "name": "MenberEpoch", "type": "int32", "versions": "0+",
"about": "The current menber epoch." },
{ "name": "dientld", "type": "string", "versions": "O0+",
"about": "The client ID." },

{ "name": "dientHost", "type": "string", "versions": "0+",

, or

t":

“nul 1",

"about": "The client host." },
{ "name": "SubscribedTopi cNanes", "type": "[]string", "versions": "0+", "entityType": "topicNanme",
"about": "The subscribed topic nanmes." },
{ "name": "Assignment", "type": "Assignnent", "versions": "O0+",
"about": "The current assignment." }
1},
{ "name": "AuthorizedQperations", "type": "int32", "versions": "0+", "default": "-2147483648",
"about": "32-bit bitfield to represent authorized operations for this group." }
]
}
1.
"commonStructs": [
{ "name": "TopicPartitions", "versions": "0+", "fields": [
{ "name": "Topicld", "type": "uuid", "versions": "0+",
"about": "The topic ID." },
{ "nanme": "TopicNane", "type": "string", "versions": "0+", "entityType": "topicNanme",
"about": "The topic nane." },
{ "nanme": "Partitions", "type": "[]int32", "versions": "0+",
"about": "The partitions." }
1},
{ "name": "Assignment", "versions": "O+", "fields": [
{ "name": "TopicPartitions", "type": "[]TopicPartitions", "versions": "O0+",
"about": "The assigned topic-partitions to the nenber." },
{ "name": "Error", "type": "int8", "versions": "O+",
"about": "The assigned error." },
{ "nane": "MetadataVersion", "type": "int32", "versions": "0+",
"about": "The assignor netadata version." },
{ "nanme": "MetadataBytes", "type": "bytes", "versions": "0+",
"about": "The assignor netadata bytes." }
1}
]

ShareFetch API

The ShareFetch API is used by share group consumers to fetch acquired records from share-partition leaders. It is also possible to piggyback
acknowledgements in this request to reduce the number of round trips.

The first request from a share consumer to a share-partition leader broker establishes a share session by setting Menber | d to the member ID it received
from the group coordinator and Shar eSessi onEpoch to 0. Then each subsequent Shar eFet ch or Shar eAcknowl edge request specifies the Menber | ¢

and increments the Shar eSessi onEpoch by one. When the share consumer wishes to close the share session, it sets Menber | d to the member ID
and Shar eSessi onEpoch to-1.

Request schema

"api Key": NN,
"type": "request",
"listeners": ["broker"],
"name": " ShareFet chRequest",
"val i dVersions": "0",
"fl exi bl eVersions": "0+",
"fields": [
{ "name": "Goupld", "type": "string", "versions": "O0+", "nullableVersions": "0+", "default": "null",
"entityType": "groupld",
“about": "null if not provided or if it didn't change since the last fetch; the group identifier
otherwi se." },
{ "name": "Menberld", "type": "string", "versions": "0+", "nullabl eVersions": "0+",
"about": "The menber ID." },
{ "name": "ShareSessi onEpoch", "type": "int32", "versions": "O0+",
"about": "The current share session epoch: 0 to open a share session; -1 to close it; otherw se
increments for consecutive requests." },
{ "name": "MaxWaitMs", "type": "int32", "versions": "0+",
"about": "The maxinmumtime in nmilliseconds to wait for the response." },
{ "name": "M nBytes", "type": "int32", "versions": "O+",
"about": "The m ninum bytes to accumulate in the response." },
{ "name": "MaxBytes", "type": "int32", "versions": "O+", "default": "Ox7fffffff", "ignorable": true,
"about": "The maxi num bytes to fetch. See KIP-74 for cases where this linmt may not be honored." },
{ "name": "Topics", "type": "[]FetchTopic", "versions": "0+",
"about": "The topics to fetch.", "fields": [
{ "nanme": "Topicld", "type": "uuid", "versions": "O+", "ignorable": true, "about": "The unique topic
ID."},
{ "nanme": "Partitions", "type": "[]FetchPartition", "versions": "0+",
"about": "The partitions to fetch.", "fields": [
{ "name": "Partitionlndex", "type": "int32", "versions": "0+",
"about": "The partition index." },
{ "name": "CurrentlLeader Epoch", "type": "int32", "versions": "O+", "default": "-1", "ignorable": true,
"about": "The current |eader epoch of the partition." },
{ "name": "PartitionMaxBytes", "type": "int32", "versions": "O0+",
"about": "The maxi num bytes to fetch fromthis partition. See KIP-74 for cases where this linmt my

not be honored." },
{ "name": "Acknow edgenent Batches", "type": "[]Acknow edgenent Batch", "versions": "O0+",

"about": "Record batches to acknow edge.", "fields": [
{ "name": "StartOfset", "type": "int64", "versions": "0+",
"about": "Start offset of batch of records to acknow edge."},
{ "name": "LastOfifset", "type": "int64", "versions": "0+",
"about": "Last offset (inclusive) of batch of records to acknow edge."},
{ "name": "GapOffsets", "type": "[]int64", "versions": "0+",
"about": "Array of offsets in this range which do not correspond to records."},
{ "nanme": "Acknow edgeType", "type": "int8", "versions": "0+", "default": "O0O",
"about": "The type of acknow edgenment - O0:Accept, 1: Rel ease, 2: Rej ect. "}
1}
1},
{ "name": "ForgottenTopi csData", "type": "[]ForgottenTopic", "versions": "O+", "ignorable": false,
"about": "The partitions to renove fromthis share session."”, "fields": [
{ "nanme": "Topicld", "type": "uuid", "versions": "O+", "ignorable": true, "about": "The unique topic
ID."},
{ "nanme": "Partitions", "type": "[]int32", "versions": "0+",
"about": "The partitions indexes to forget." }
1}

]
}

Response schema

"api Key": NN,

"type": "response",

"nane": "ShareFet chResponse",
"val i dVersions": "0",

"fl exi bl eVersi ons": "0+",

/1 Supported errors:

/1 - GROUP_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - TOPI C_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - UNKNOAN_TOPI C_OR _PARTI TI ON (version 0+)
/] - NOT_LEADER OR FOLLOWER (version 0+)

/1 - UNKNOWN_TOPI C_|I D (version 0+)

/1 - 1 NVALI D_RECORD_STATE (version 0+)

/1 - KAFKA_STORAGE_ERROR (version 0+)

/1 - CORRUPT_MESSAGE (version 0+)

/1 - 1 NVALI D_REQUEST (version 0+)

/1 - UNKNOWN_SERVER ERROR (version 0+)

"fields": [
{ "name": "ThrottleTi meMs", "type": "int32", "versions": "O+", "ignorable": true,
"about": "The duration in mlliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
{ "name": "ErrorCode", "type": "int1l6", "versions": "0+", "ignorable": true,
"about": "The top | evel response error code." },
{ "name": "Responses", "type": "[] ShareFetchabl eTopi cResponse"”, "versions": "0+",
"about": "The response topics.", "fields": [
{ "nanme": "Topicld", "type": "uuid", "versions": "O+", "ignorable": true, "about": "The unique topic
ID."},
{ "nanme": "Partitions", "type": "[]PartitionData", "versions": "O0+",
"about": "The topic partitions.", "fields": [
{ "name": "Partitionlndex", "type": "int32", "versions": "0+",
"about": "The partition index." },
{ "name": "ErrorCode", "type": "intl1l6", "versions": "O0+",
"about": "The error code, or O if there was no fetch error." },
{ "name": "Acknow edgeError Code", "type": "intl6", "versions": "0+",
"about": "The acknow edge error code, or O if there was no acknow edge error." },
{ "name": "CurrentlLeader", "type": "Leaderl|dAndEpoch", "versions": "0+", "fields": [
{ "nanme": "Leaderld", "type": "int32", "versions": "O0+",
"about": "The ID of the current leader or -1 if the |leader is unknown." },
{ "nanme": "LeaderEpoch", "type": "int32", "versions": "0+",
"about": "The | atest known | eader epoch." }
1},
{ "name": "Records", "type": "records", "versions": "0+", "nullabl eVersions": "0+", "about": "The
record data."},
{ "name": "AcquiredRecords", "type": "[]AcquiredRecords", "versions": "0+", "about": "The acquired
records.”, "fields": [
{"nane": "BaseOffset", "type": "int64", "versions": "O0+", "about": "The earliest offset in this
batch of acquired records."},
{"nane": "LastOffset", "type": "int64", "versions": "O+", "about": "The last offset of this batch of
acquired records."},
{"nane": "DeliveryCount", "type": "intl1l6", "versions": "0+", "about": "The delivery count of this
batch of acquired records."}
1}
1}
1},
{ "name": "NodeEndpoints", "type": "[]NodeEndpoint", "versions": "O0+",
"about": "Endpoints for all current |leaders enunerated in PartitionData with error
NOT_LEADER OR FOLLOWER. ", "fields": [
{ "nane": "Nodeld", "type": "int32", "versions": "O0+",
"mapKey": true, "entityType": "brokerld", "about": "The ID of the associated node." },
{ "name": "Host", "type": "string", "versions": "O+",
"about": "The node's hostnane." },
{ "name": "Port", "type": "int32", "versions": "O+",
"about": "The node's port." },
{ "nanme": "Rack", "type": "string", "versions": "O0+", "nullableVersions": "0+", "default": "null",
"about": "The rack of the node, or null if it has not been assigned to a rack." }
1}

ShareAcknowledge API

The ShareAcknowledge APl is used by share group consumers to acknowledge delivery of records with share-partition leaders.

Request schema

{
"api Key": NN,
"type": "request",
"listeners": ["broker"],
"name": "ShareAcknow edgeRequest ",
"val i dVersions": "0",
"fl exi bl eVersions": "0+",
"fields": [
{ "name": "Menberld", "type": "string", "versions": "0+", "nullabl eVersions": "0+",
"about": "The menber ID." },
{ "name": "ShareSessionEpoch", "type": "int32", "versions": "O0+",
"about": "The current share session epoch: O to open a share session; -1 to close it; otherw se
increments for consecutive requests." },
{ "name": "Topics", "type": "[]Acknow edgeTopic", "versions": "O+",
"about": "The topics containing records to acknow edge.", "fields": [
{ "name": "Topicld", "type": "uuid", "versions": "O+", "about": "The unique topic ID."},
{ "nanme": "Partitions", "type": "[]Acknow edgePartition", "versions": "0+",
"about": "The partitions containing records to acknow edge.", "fields": [
{ "name": "Partitionlndex", "type": "int32", "versions": "0+",
"about": "The partition index." },
{ "name": "Acknow edgenent Batches", "type": "[]Acknow edgenent Batch", "versions": "O0O+",
"about": "Record batches to acknow edge.", "fields": [
{ "nanme": "StartOffset”, "type": "int64", "versions": "0+",
"about": "Start offset of batch of records to acknow edge."},
{ "nanme": "LastOffset", "type": "int64", "versions": "0+",
"about": "Last offset (inclusive) of batch of records to acknow edge."},
{ "name": "GapOffsets", "type": "[]int64", "versions": "0+",
"about": "Array of offsets in this range which do not correspond to records."},
{ "name": "Acknow edgeType", "type": "int8", "versions": "0+", "default": "0",
"about": "The type of acknow edgenent - 0: Accept, 1: Rel ease, 2: Reject."}
1}
1}
1}
]
}

Response schema

"api Key": NN,

"type": "response",

"nane": "ShareAcknow edgeResponse”,
"val i dVersions": "0",

"fl exi bl eVersi ons": "0+",

/1 Supported errors:

/1 - GROUP_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - TOPI C_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - UNKNOAN_TOPI C_OR _PARTI TI ON (version 0+)
/] - NOT_LEADER OR FOLLOWER (version 0+)

/1 - UNKNOWN_TOPI C_|I D (version 0+)

/1 - 1 NVALI D_RECORD_STATE (version 0+)

/1 - KAFKA_STORAGE_ERROR (version 0+)

/1 - 1 NVALI D_REQUEST (version 0+)

/1 - UNKNOWN_SERVER_ERROR (version 0+)

"fields": [
{ "name": "ThrottleTi meMs", "type": "int32", "versions": "O0+", "ignorable": true,
"about": "The duration in mlliseconds for which the request was throttled due to a quota violation,
zero if the request did not violate any quota." },
{ "name": "ErrorCode", "type": "intl6", "versions": "0+", "ignorable": true,
"about": "The top | evel response error code." },
{ "name": "Responses", "type": "[] ShareAcknow edgeTopi cResponse", "versions": "0+",
"about": "The response topics.", "fields": [
{ "name": "Topicld", "type": "uuid", "versions": "O+", "ignorable": true, "about": "The unique topic
ID."},
{ "nanme": "Partitions", "type": "[]PartitionData", "versions": "O0+",
"about": "The topic partitions.", "fields": [
{ "name": "Partitionlndex", "type": "int32", "versions": "O+",
"about": "The partition index." },
{ "name": "ErrorCode", "type": "intl1l6", "versions": "O0O+",
"about": "The error code, or O if there was no error." },
{ "name": "CurrentlLeader", "type": "Leaderl|dAndEpoch", "versions": "0+", "fields": [
{ "nanme": "Leaderld", "type": "int32", "versions": "O0+",
"about": "The ID of the current leader or -1 if the leader is unknown." },
{ "nanme": "LeaderEpoch", "type": "int32", "versions": "0+",
"about": "The | atest known | eader epoch." }
1}
1}
1},
{ "name": "NodeEndpoints", "type": "[]NodeEndpoint", "versions": "0+",
"about": "Endpoints for all current |leaders enunerated in PartitionData with error
NOT_LEADER OR FOLLOWNER. ", "“fields": [
{ "nanme": "Nodeld", "type": "int32", "versions": "O+",
"mapKey": true, "entityType": "brokerld", "about": "The ID of the associated node." },
{ "name": "Host", "type": "string", "versions": "O+",
"about": "The node's hostnane." },
{ "nanme": "Port", "type": "int32", "versions": "O+",
"about": "The node's port." },
{ "nanme": "Rack", "type": "string", "versions": "O0+", "nullableVersions": "0+", "default": "null",
"about": "The rack of the node, or null if it has not been assigned to a rack." }
1}

AlterShareGroupOffsets API

The AlterShareGroupOffsets API is used to alter the share-partition start offsets for the share-partitions in a share group. The share-partition leader

handles this API.

Request schema

or

"api Key": NN,

"type": "request",

"listeners": ["broker"],

"name": "AlterShareG oupOfset sRequest”,

"val i dVersions": "0",
"fl exi bl eVersions": "0+",
"fields": [
{ "name": "Goupld", "type": "string", "versions": "O0+", "entityType": "groupld",
"about": "The group identifier." },
{ "name": "Topics", "type": "[]AlterShareG oupffsetsRequestTopic", "versions": "0+",
"about": "The topics to alter offsets for.", "fields": [
{ "nane": "TopicNane", "type": "string", "versions": "0+", "entityType": "topicNane", "nmapKey": true,
"about": "The topic nane." },
{ "nanme": "Partitions", "type": "[]Al terShareG oupXffsetsRequestPartition", "versions": "O0+",
"about": "Each partition to alter offsets for.", "fields": [
{ "name": "Partitionlndex", "type": "int32", "versions": "0+",
"about": "The partition index." },
{ "name": "StartOfset", "type": "int64", "versions": "0+",
"about": "The share-partition start offset." }
1}
1}
]

Response schema

{
"api Key": NN,
"type": "response",
"name": "AlterShareG oupOf f set sResponse”,
"val i dVersions": "0",
"fl exi bl eVersions": "0+",

/1 Supported errors:

/1 - GROUP_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - NOT_COORDI NATOR (version 0+)

/1 - COORDI NATOR_NOT_AVAI LABLE (version 0+)

// - COORDI NATOR _LOAD | N_PROGRESS (version 0+)
/1 - GROUP_I D_NOT_FQUND (version 0+)

/1 - GROUP_NOT_EMPTY (version 0+)

/1 - KAFKA_STORAGE_ERROR (version 0+)

/1 - 1 NVALI D_REQUEST (version 0+)

"0+, "fields":

"ignorable":

/1 - UNKNOWN_SERVER_ERROCR (version 0+)
"fields": [
{ "name": "ThrottleTi meMs", "type": "int32", "versions": "O+", "ignorable": true,
"about": "The duration in mlliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
{ "name": "Responses", "type": "[]Al terShareG oupOfsetsResponseTopic", "versions": "O0+",
"about": "The results for each topic.", "fields": [
{ "nane": "TopicNane", "type": "string", "versions": "0+", "entityType": "topicNanme",
"about": "The topic nane." },
{ "nanme": "Topicld", "type": "uuid", "versions": "O+", "ignorable": true,
"about": "The unique topic ID. " },
{ "name": "Partitions", "type": "[]AlterShareG oupOffsetsResponsePartition", "versions":
{ "name": "Partitionlndex", "type": "int32", "versions": "O0+",
"about": "The partition index." },
{ "name": "ErrorCode", "type": "int1l6", "versions": "O0O+",
"about": "The error code, or O if there was no error." },
"name": "ErrorMessage", "type": "string", "versions": "O0+", "nullableVersions": "O0+",
true, "default": "null",
"about": "The error nessage, or null if there was no error." }
1}
1}

]

DeleteShareGroupOffsets API

The DeleteShareGroupOffsets API is used to delete the offsets for the share-partitions in a share group. The share-partition leader handles this API.

Request schema

{
"api Key": NN,
"type": "request",
"listeners": ["broker"],
"name": "Del et eShareG oupO f set sRequest ",
"validVersions": "0",
"fl exi bl eVersions": "0+",
"fields": [
{ "name": "Goupld", "type": "string", "versions": "O+", "entityType": "groupld",
"about": "The group identifier." },
{ "name": "Topics", "type": "[]Del eteShareG oupOf f set sRequest Topi c", "versions": "O0O+",
"about": "The topics to delete offsets for.", "fields": [
{ "nane": "TopicNane", "type": "string", "versions": "0+", "entityType": "topicNanme",
"about": "The topic nane." },
{ "nanme": "Partitions", "type": "[]int32", "versions": "0+",
"about": "The partitions." }
1}
1}
]
}

Response schema

"api Key": NN,

"type": "response",

"nane": "Del et eShareG oupOf f set sResponse”,
"val i dVersions": "0",

"flexibleVersions": "0+",

/1 Supported errors:

/1 - GROUP_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - NOT_COORDI NATOR (version 0+)

// - COORDI NATOR_NOT_AVAI LABLE (version 0+)

/1 - COORDI NATOR _LOAD_| N_PROGRESS (version 0+)
/1 - GROUP_I D_NOT_FOUND (version 0+)

/1 - GROUP_NOT_EMPTY (version 0+)

/1 - KAFKA_STORAGE_ERROR (version 0+)

/1 - 1 NVALI D_REQUEST (version 0+)

/1 - UNKNOWN_SERVER_ERROR (version 0+)

"fields": [
{ "name": "ThrottleTi meMs", "type": "int32", "versions": "O0+", "ignorable": true,
"about": "The duration in mlliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
{ "name": "Responses", "type": "[]Del et eShareG oupCf f set sResponseTopi c", "versions": "O0+",
"about": "The results for each topic.", "fields": [
{ "nanme": "Topi cNane", "type": "string", "versions": "0+", "entityType": "topi cNane",
"about": "The topic name." },
{ "name": "Topicld", "type": "uuid", "versions": "O+", "ignorable": true,
"about": "The unique topic ID. " },
{ "name": "Partitions", "type": "[]Del eteShareG oupO fsetsResponsePartition", "versions": "0+", "fields":
[
{ "name": "Partitionlndex", "type": "int32", "versions": "O+",
"about": "The partition index." },
{ "name": "ErrorCode", "type": "intl1l6", "versions": "O0O+",
"about": "The error code, or O if there was no error." },
{ "name": "ErrorMessage", "type": "string", "versions": "0+", "nullabl eVersions": "0+", "ignorable":
true, "default": "null",
"about": "The error nessage, or null if there was no error." }
1}
1}
]
}

DescribeShareGroupOffsets API

The DescribeShareGroupOffsets API is used to describe the offsets for the share-partitions in a share group. The share-partition leader handles this API.

Request schema

{
"api Key": NN,
"type": "request",
"listeners": ["broker"],
"nane": "DescribeShareG oupOf f set sRequest ™,
"val i dVersions": "0",
"flexi bl eVersions": "0+",
"fields": [
{ "name": "Goupld", "type": "string", "versions": "0+", "entityType": "groupld",
"about": "The group identifier." },
{ "name": "Topics", "type": "[]DescribeShareG oupX fsetsRequest Topi c", "versions": "O0+",
"about": "The topics to describe offsets for.", "fields": [
{ "name": "Topi cNane", "type": "string", "versions": "0+", "entityType": "topicNane",
"about": "The topic name." },
{ "name": "Partitions", "type": "[]int32", "versions": "0+",
"about": "The partitions." }
1}
1}
]

Response schema

{
"api Key": NN,
"type": "response",
"name": "DescribeShareG oupOXf f set sResponse”,
"val i dVersions": "0",
"fl exi bl eVersions": "0+",
/1 Supported errors:
/1 - GROUP_AUTHORI ZATI ON_FAI LED (version 0+)
/1 - NOT_COORDI NATOR (version 0+)
/1 - COORDI NATOR_NOT_AVAI LABLE (version 0+)
// - COORDI NATOR _LOAD | N_PROGRESS (version 0+)
/1 - GROUP_I D_NOT_FQUND (version 0+)
/1 - 1 NVALI D_REQUEST (version 0+)
/1 - UNKNOWN_SERVER _ERROCR (version 0+)
"fields": [
{ "name": "ThrottleTi neMs", "type": "int32", "versions": "0+", "ignorable": true,
"about": "The duration in mlliseconds for which the request was throttled due to a quota violation, or
zero if the request did not violate any quota." },
{ "name": "Responses", "type": "[]DescribeShareG oupO fsetsResponseTopic", "versions": "O0+",
"about": "The results for each topic.", "fields": [
{ "nanme": "TopicNane", "type": "string", "versions": "0+", "entityType": "topicNanme",
"about": "The topic nane." },
{ "nanme": "Topicld", "type": "uuid", "versions": "O+", "ignorable": true,
"about": "The unique topic ID." },
{ "nanme": "Partitions", "type": "[]DescribeShareG oupO fsetsResponsePartition", "versions": "0+",
"fields": [
{ "name": "Partitionlndex", "type": "int32", "versions": "0+",
"about": "The partition index." },
{ "name": "StartOfset", "type": "int64", "versions": "0+",
"about": "The share-partition start offset."},
{ "name": "ErrorCode", "type": "int1l6", "versions": "O0+",
"about": "The error code, or O if there was no error." },
{ "name": "ErrorMessage", "type": "string", "versions": "0+", "nullabl eVersions": "0+", "ignorable":
true, "default": "null",
"about": "The error nmessage, or null if there was no error." }
1}
1}
]
}
Records

This section describes the new record types.

Group metadata

In order to coexist properly with consumer groups, the group metadata records for share groups are persisted by the group coordinator to the compacted _
_consuner _of fset s topic.

For each share group, a single Consuner G oupMet adat a record is written. When the group is deleted, a tombstone record is written.

ConsumerGroupMetadataKey

This is included for completeness. There is no change to this record.

{
"type": "data",
"name": "Consuner G oupMet adat aKey",
"val i dVersions": "3",
"fl exi bl eVersions": "none",
"fields": [
{ "name": "Goupld", "type": "string", "versions": "3",

"about": "The group id." }

ConsumerGroupMetadataValue

A new version of the record value is introduced contains the Type field. For a share group, the type will be "shar e" . For a consumer group, the type can
be omitted (null) or " consuner " .

{
"type": "data",
"name": "Consuner G oupMet adat aVal ue",
"validVersions": "0-1",
"fl exi bl eVersions": "0+",
"fields": [
{ "name": "Epoch", "type": "int32", "versions": "O0+",
"about": "The group epoch." },
/1 Version 1 adds Type field
{ "name": "Type", "type": "string", "versions": "1+", "nullabl eVersions": "1+",
"about": "The group type - null indicates consumer group." }
]
}

Share-partition state

The existing Cont r ol Recor dKey is used for the key of the SHARE_CHECKPOINT (Type = 5) and SHARE_DELTA (Type = 6) control records.

ShareCheckpointValue

{
"type": "data",
"nane": " ShareCheckpoi nt Val ue",
"val i dVersions": "0",
"fl exi bl eVersions": "none",
"fields": [
{ "nane": "Goupld", "type": "string", "versions": "0",
"about": "The group identifier." },
{ "nane": "Checkpoi nt Epoch", "type": "uint1l6", "versions": "0",
"about": "The checkpoi nt epoch, increments with each checkpoint." },
{ "nane": "StartOfset", "type": "int64", "versions": "0",
"about": "The share-partition start offset." },
{ "nanme": "EndCffset", "type": "int64", "versions": "0",
"about": "The share-partition end offset." },
{ "nane": "States", "type": "[]State", "versions": "0", "fields": [
{ "name": "BaseOffset", "type": "int64", "versions": "0",
"about": "The base offset of this state batch." },
{ "nanme": "LastOffset", "type": "int64", "versions": "0",
"about": "The last offset of this state batch." },
{ "nane": "State", "type": "int8", "versions": "0",
"about": "The state - 0:Avail abl e, 2: Acked, 4: Archived." },
{ "nanme": "DeliveryCount", "type": "int16", "versions": "0",
"about": "The delivery count." }
1}
]
}

ShareDeltaValue

"type": "data",

"name": "ShareDel taVval ue",
"val i dVersions": "0",
"fl exi bl eVersions": "none",
"fields": [
{ "nanme": "Goupld", "type": "string", "versions": "0",
"about": "The group identifier." },
{ "name": "Checkpoint Epoch", "type": "uintl16", "versions": "0",
"about": "The checkpoi nt epoch, increnents with each checkpoint.
{ "nane": "States", "type": "[]State", "versions": "0", "fields":
{ "nanme": "BaseOfset", "type": "int64", "versions": "0",
"about": "The base offset of this state batch." },
{ "name": "LastOffset", "type": "int64", "versions": "0",
"about": "The last offset of this state batch." },
{ "nane": "State", "type": "int8", "versions": "0",
"about": "The state - 0:Avail abl e, 2: Acked, 4: Archived. " },
{ "nanme": "DeliveryCount", "type": "intl1l6", "versions": "0",
"about": "The delivery count." }

1}

Index structure for locating share-partition state

[

b

More information needs to be added to describe how the index for locating the share-partition state is arranged.

Metrics

Broker Metrics

The following new broker metrics should be added:

Metric Name

group-count

rebalance (rebalance-rate and
rebalance-count)

num-partitions

group-count

share-acknowledgement (share-
acknowledgement-rate and share-
acknowledgement-count)

Type

Gauge

Meter

Gauge

Gauge

Meter

Group

group-
coordinat
or-
metrics

group-
coordinat
or-
metrics

group-
coordinat
or-
metrics

group-
coordinat
or-
metrics

group-
coordinat
or-
metrics

Tags

protocol :
share

protocol :
share

protocol :
share

protocol :
share

state:
{enpty|stab
| e| dead}

protocol :
share

Description

The total number of
share groups managed
by group coordinator.

The total number of
share group
rebalances count and
rate.

The number of share
partitions managed by
group coordinator.

The number of share
groups in respective
state.

The total number of
offsets acknowledged
for share groups.

JMX Bean

kaf ka. server: type=group-coordi nator-netrics,
nane=gr oup- count, pr ot ocol =share

kaf ka. server: type=group-coordi nator-netrics,
nane=r ebal ance-rat e, prot ocol =share

kaf ka. server: t ype=gr oup- coordi nator-netrics,
name=r ebal ance- count, prot ocol =share

kaf ka. server: t ype=gr oup- coordi nator-netrics,
name=num partitions, protocol =share

kaf ka. server: t ype=group- coordi nator-metrics,
nane=gr oup- count, pr ot ocol =shar e, st at e=
{enpty| st abl e| dead}

kaf ka. server: t ype=gr oup- coordi nator-metrics,
nane=shar e- acknow edgenent -r at e, prot ocol =share

kaf ka. server: type=group-coordi nator-netrics,
nane=shar e- acknow edgenent - count, pr ot ocol =share

record-acknowledgement (record- Meter group- protocol : The number of records | kaf ka. server: type=gr oup-coordi nator-netrics,

acknowledgement-rate and record- coordinat | share acknowledged per name=r ecor d- acknow edgenent -rat e,
acknowledgement-count) or- acknowledgement type. ' prot ocol =shar e, ack-type={accept, rel ease, reject}
metrics ack-type:
{accept,
rel ease, kaf ka. server: type=group-coordi nator-netrics,
reject} name=r ecor d- acknow edgenent - count,

protocol =shar e, ack-type={accept, rel ease, rej ect}

partition-load-time (partition-load- Meter group- protocol : The time taken to load kaf ka. server: type=group-coordi nator-metrics,
time-avg and partition-load-time- coordinat | share the share partitions. name=partition-|oad-time-avg, protocol =share
max) or-

metrics

kaf ka. server: t ype=group- coordi nator-netrics,
nane=partition-| oad-ti me-nmax, protocol =share

Future Work

There are some obvious extensions to this idea which are not included in this KIP in order to keep the scope manageable.

This KIP introduces delivery counts and a maximum number of delivery attempts. An obvious future extension is the ability to copy records that failed to be
delivered onto a dead-letter queue. This would of course give a way to handle poison messages without them permanently blocking processing.

The focus in this KIP is on sharing rather than ordering. The concept can be extended to give key-based ordering so that partial ordering and fine-grained
sharing can be achieved at the same time.

For topics in which share groups are the only consumption model, it would be nice to be able to have the SPSO of the share-partitions taken in to
consideration when cleaning the log and advancing the log start offset.

It would also be possible to have share-group configuration to control the maximum time-to-live for records and automatically archive them at this time.

Finally, this KIP does not include support for acknowledging delivery using transactions for exactly-once semantics. Conceptually, this is quite
straightforward but would take changes to the API.

Compatibility, Deprecation, and Migration Plan

Kafka Broker Migration

This KIP builds upon KIP-848 which introduced the new group coordinator and the new records for the __consuner _of f set s topic. The pre-KIP-848
group coordinator will not recognize the new records, so this downgrade is not supported.

Downgrading to a software version that supports the new group coordinator but does not support share groups is supported. This KIP adds a new version
for the Consuner G- oupMet adat aVal ue record to include the group type. If the software version does not understand the v1 record type, it will assume
the records apply to a consumer group of the same name. We should make sure this is a harmless situation.

More information need to be added here based on the share-partition persistence mechanism. Details are still under consideration here.

Test Plan

The feature will be throughly tested with unit, integration and system tests. We will also carry out performance testing both to understand the performance
of share groups, and also to understand the impact on brokers with this new feature.

Rejected Alternatives

Share group consumers use KafkaConsumer

In this option, the regular Kaf kaConsuner was used by consumers to consume records from a share group, using a configuration parameter gr oup.
t ype to choose between using a share group or a consumer group. While this means that existing Kafka consumers can trivially make use of share
groups, there are some obvious downsides:

1. An application using Kaf kaConsurer with a consumer group could be switched to a share group with very different semantics with just a
configuration change. There is almost no chance that the application would work correctly.

2. Libraries such as Kafka Connect which embed Kafka consumers while not work correctly with share groups without code changes beyond
changing the configuration. As a result, there is a risk of breaking connectors due to misconfiguration using the gr oup. t ype configuration
property.

3. More than half of the Kaf kaConsumer methods do not make sense for share groups introducing a lot of unnecessary cruft.

As a result, the KIP now proposes an entirely different class Kaf kaShar eConsuner which gives a very similar interface as Kaf kaConsuner but
eliminates the downsides listed above.

	KIP-932: Queues for Kafka

