
KIP-945: Update threading model for Consumer

Status
Motivation
Public Interfaces
Proposed Changes

Terminology
Threading Model

Background thread
Providing Data to the Background Thread
Getting Data from the Background Thread

Network I/O
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: WIP

Discussion thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Note this is a joint proposal by , , and .Philip Nee Kirk True Lianet Magrans

Motivation
This KIP documents the updated threading model of the implementation of the client.Consumer

The complexity of the consumer has increased and with it the code to support and fix bugs. Patches and hotfixes in the past years have heavily impacted
the readability of the code. The complex code path and intertwined logic make the code difficult to modify and comprehend. Additionally, logic is at times
executed on application threads and at other times on the dedicated, internal thread. The asynchronous nature of the current implementation heartbeat
has lead to many bugs (which are labeled with the label. The motivation is to simplify the structure of the code by new-consumer-threading-should-fix
clearly defining—and removing, where possible—the asynchronous code.

The simplification will also allow us to implement the necessary primitives for .KIP-848

Public Interfaces
This KIP has the explicit goal of making changes to the public interfaces. The protocol, configuration, APIs, etc. will remain as they currently are. The no
internal behavior of the consumer is substantially changing and we want to ensure it is reviewed and vetted by the community.

Proposed Changes

Terminology

To help understand the design, we need to introduce some terminology. Terms designated with apply to the current implementation 1 KafkaConsumer

and terms with apply to the new implementation; a term may apply to both.2

Term Definition

Application
event

A data structure specific to each API call that encapsulates application-provided data. For example, the application event Consumer
specific to the event would include the user-provided topic information and offset. These events are enqueued onto the seek application

 by the .event queue Consumer

Application events can optionally include a on which the can issue a timed block, awaiting completion by the Future application thread ba
. ckground thread

Application
event
processor

Logic which processes on the , interacting with the .application events background thread request managers

https://lists.apache.org/thread/13jvwzkzmb8c6t7drs4oj2kgkjzcn52l
https://issues.apache.org/jira/browse/KAFKA-14246
https://cwiki-test.apache.org/confluence/display/~pnee
https://cwiki-test.apache.org/confluence/display/~kirktrue
https://cwiki-test.apache.org/confluence/display/~lianetmr
https://issues.apache.org/jira/issues/?jql=labels%20%3D%20new-consumer-threading-should-fix
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-848%3A+The+Next+Generation+of+the+Consumer+Rebalance+Protocol

Application
event
queue

A shared queue which stores enqueued by the . These events are later dequeued by the application events application thread background
 and given to the for execution.thread application event processor

Application
thread

The thread that is executing the user's code that interacts with the API. Per the current implementation in , Consumer KafkaConsumer
only one thread may call APIs at a time.

Backgroun
d event

Backgroun
d event
queue

A shared queue which stores enqueued by the . The events are later dequeued by the background events background thread application
 inside the and handled appropriately.thread Consumer

Backgroun
d thread

An internal thread created for each instance on which the following operations are performed:Consumer

Execution of application events
Group membership
Managing network I/O requests and responses
Forwarding results to application events
Submitting for processing by the background events application thread

Event
handler

Logic that pulls from the for processing on the .events event queue background thread

Heartbeat Logic related to communicating liveness, group membership, etc. as introduced in .KIP-62

Network
client
delegate

Request
manager

An internal interface that is used by the background thread to handle the management of requested, inflight, and responded network I/O.

Threading Model

<TBD>

Background thread

<TBD>

Providing Data to the Background Thread

<TBD>

Getting Data from the Background Thread

<TBD>

Network I/O

<TBD>

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users?
If we are changing behavior how will we phase out the older behavior?
If we need special migration tools, describe them here.
When will we remove the existing behavior?

Test Plan
Describe in few sentences how the KIP will be tested. We are mostly interested in system tests (since unit-tests are specific to implementation details).
How will we know that the implementation works as expected? How will we know nothing broke?

Rejected Alternatives

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-62%3A+Allow+consumer+to+send+heartbeats+from+a+background+thread

If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

	KIP-945: Update threading model for Consumer

