
KIP-957: Support Async runtimes

Status
Design goal
Motivation
Public Interfaces
Proposed Changes

Implementation rules for sub classes that override acquire and release
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: Withdrawn, this should have been included in KIP-944.

Discussion thread: here

JIRA: KAFKA-14972

Proposed implementation: pull request 14071

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Design goal
The goal of this KIP is to allow consumer callbacks to call the consumer again from another thread.

Motivation
Rebalances cause a lot of message duplication. This can be prevented by doing commits in the partition-revoked callback. This KIP will make it much
easier to do work in that callback when an async runtime is used.

The JVM based KafkaConsumer contains a check that rejects nested invocations from different threads (in method acquire). For programs that use an
async runtime, this is an almost impossible requirement. Also, the check is more strict than is required; we only need to validate that there is no concurrent
access to the consumer.

Examples of affected async runtimes are Kotlin co-routines (see) and Zio.KAFKA-7143

Here follows a condensed example of how we'd like to use ZIO in the rebalance listener callback from the zio-kafka library.

onRevoked callback

def onRevoked(revokedTopicPartitions: Set[TopicPartition], consumer: KafkaConsumer) = {
 for {
 _ <- ZIO.logDebug(s"${revokedTps.size} partitions are revoked")
 state <- currentStateRef.get
 streamsToEnd = state.assignedStreams.filter(control => revokedTps.contains(control.tp)) // Note, we run 1
stream per partition.
 _ <- ZIO.foreachParDiscard(streamsToEnd)(_.end(consumer)) // <== Streams will commit not yet
committed offsets
 _ <- awaitCommitsCompleted(consumer).timeout(15.seconds)
 _ <- ZIO.logTrace("onRevoked done")
 } yield ()
}

This code is run using the ZIO-runtime as follows from the {{ }} method:ConsumerRebalanceListener::onPartitionsRevoked

https://lists.apache.org/thread/9m748f82os8xlqgrhpk8skpd90p9ckng
https://issues.apache.org/jira/browse/KAFKA-14972
https://github.com/apache/kafka/pull/14071
https://issues.apache.org/jira/browse/KAFKA-7143

Running ZIO code from callback

def onPartitionsRevoked(partitions: java.util.Collection[TopicPartition]): Unit = {
 Unsafe.unsafe { implicit u =>
 runtime.unsafe
 .run(onRevoked(partitions.asScala.toSet, consumer))
 .getOrThrowFiberFailure()
 ()
 }
}

(Note that this code is complex on purpose, starting a ZIO workflow from scratch is not something you would normally do.)

Look at line 6 of the first code block. In method the stream will try to call . In end consumer::commitAsync(offsets, callback) awaitCommitsCom
 (line 7) we call to wait untill all callbacks are invoked.pleted() consumer::commitSync(Collections.emptyMap)

Since this code is running in the rebalance listener callback, KafkaConsumer enforces that the commit methods must be invoked from the same thread as
the thread that invoked . Unfortunately, the ZIO runtime is inherently multi-threaded; tasks can be executed from any thread. onPartitionsRevoked
There is no way Zio could support this limitation without a major rewrite.

Public Interfaces
Two methods will change from private to protected: and in the same class org.apache.kafka.clients.consumer.KafkaConsumer:acquire
method .::release

Proposed Changes
See section 'public interfaces' above.

The change will allow custom sub-classes to implement and any way they like.acquire release

Implementation rules for sub classes that override acquire and release

Methods and ensure that only 1 thread can invoke the consumer at a time. Similarly, they ensure that only 1 thread can invoke the acquire release
consumer from code that is running in a consumer callback.

Methods and also need to make sure that memory writes from all threads involved are visible for each other.acquire release

When and are overridden, it is up to the implementation to uphold these requirements.acquire release

Compatibility, Deprecation, and Migration Plan
For existing users nothing changes. There is no need to deprecate anything. No migration is needed.

Test Plan
Since the change does not change behavior of the library, no additional tests are needed.

Rejected Alternatives
See for a viable alternative.KIP-944

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-944%3A+Support+async+runtimes+in+consumer

	KIP-957: Support Async runtimes

