
KIP-976: Cluster-wide dynamic log adjustment for Kafka
Connect

Status
Motivation
Public Interfaces

Scope query parameter
Last modified timestamp

Proposed Changes
Distributed mode

Servicing REST requests
Config topic records

Standalone mode
Compatibility, Deprecation, and Migration Plan

Setting logging levels
Getting logging levels
Worker downgrades

Test Plan
Unit tests
Integration tests
System tests

Rejected Alternatives
Request-time modified timestamp tracking
Versioned request format
Persistent logging level updates

Future work
More scope types
Enable by default
Config topic cleanup logic

Status
Current state: Accepted

Discussion thread: here

Voting thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
KIP-495 added a REST API to Kafka Connect that allowed cluster administrators to dynamically adjust log levels at runtime, without having to restart
workers or alter their logging configuration file (e.g., the config/connect-log4j.properties file).

While this feature has proven quite valuable over time for debugging some connectors without disrupting the availability of others that were partially or
entirely running on the same worker, its one-REST-request-per-worker model can be cumbersome in some scenarios:

When debugging issues with the Connect runtime itself, especially ones related to cluster membership and rebalances, it can be useful to adjust
log levels for every worker in the cluster
When debugging issues with specific connectors or types of connector, it can be necessary to adjust log levels for a large number of workers
(every worker that hosts an instance of that connector or connector type)
When running Kafka Connect (or at least, its public-facing REST API) behind a load balancer, it may not be possible to target a specific worker
with a dynamic log adjustment request

As an incremental improvement to this feature, we can add support for broadcasting dynamic log adjustments to every worker in the cluster.

Public Interfaces

Scope query parameter

A query parameter, , will be added to the existing endpoint. The recognized values (case-insensitive) for this scope PUT /admin/loggers/{logger}
parameter will be:

Worker (default if no value is specified): This will mirror the current behavior of the endpoint: only the worker that receives the request will adjust
its log levels, and the response body will include a list of the modified logging namespaces

https://lists.apache.org/thread/w3x3f3jmyd1vfjxho06y8xgt6mhhzpl5
https://lists.apache.org/thread/26qdzw15shvdb0ryb3kzjfvg5t04bl58
https://issues.apache.org/jira/browse/KAFKA-15428
https://cwiki.apache.org/confluence/display/KAFKA/KIP-495%3A+Dynamically+Adjust+Log+Levels+in+Connect

Cluster: This will cause every worker in the cluster to adjust its log levels; the response will have no body and its status will be 204 (no content)
Any other value: This will cause the worker to issue a warning log message, but otherwise handle the request as if no query parameter were
specified

Last modified timestamp

The existing and endpoints will be augmented to provide a timestamp for when the logging GET /admin/loggers GET /admin/loggers/{logger}
level for each namespace was last modified. The timestamp will be a standard Unix timestamp with millisecond precision–that is, it will be the number of
milliseconds that have elapsed between January 1st, 1970 and when the namespace was modified on the worker. Timestamps will be updated regardless
of whether the namespace update was applied using or .scope=worker scope=cluster

Modification times will be tracked in-memory and determined by when they are applied by the worker, as opposed to when they are requested by the user
or persisted to the config topic (details below). If no modifications to the namespace have been made since the worker finished startup, the timestamp will
be null.

The endpoint will have this new response format, where is the last modified timestamp:GET /admin/loggers ${last_modified}

GET /admin/loggers

[
 ...
 "org.apache.kafka.connect.runtime.WorkerSinkTask": {
 "level": "INFO",
 "last_modified": ${last_modified} // New field
 },
 "org.apache.kafka.connect.runtime.WorkerSourceTask": {
 "level": "DEBUG",
 "last_modified": ${last_modified} // New field
 },
 ...
]

The endpoint will have this new response format (using in the same manner as above):GET /admin/loggers/{logger} ${last_modified}

GET /admin/loggers/{logger}

{
 "level": "INFO",
 "last_modified": ${last_modified} // New field
 }

Proposed Changes

Distributed mode

Servicing REST requests

If the query parameter is set to , the worker that receives this request will write a record to the config topic instructing all workers in the scope cluster
cluster to adjust their log levels. It will then read to the end of the config topic, guaranteeing that at least the worker that received the request has adjusted
its log levels. This is similar to how the API to restart all tasks for a connector en masse was implemented as part of .KIP-745

Since cluster metadata is not required to handle these types of request, they will not be forwarded to the leader, and they will be eligible for handling even
during rebalances. This is similar (though not identical) to existing logic for pausing and resuming connectors in distributed mode.

Config topic records

Record keys will have the format , where is the logging namespace to adjust."logger-cluster-${logger}" ${logger}

Record values will have the following format, where is the new logging level for the namespace:${level}

https://cwiki.apache.org/confluence/display/KAFKA/KIP-745%3A+Connect+API+to+restart+connector+and+tasks

Config topic record value format

{
 "level": "${level}"
}

As an example, when handling a request to set the logging level of the namespace org.apache.kafka.connect.runtime.distributed.
 to with a of (if you're debugging the distributed herder, you need all the help you can get), a worker would DistributedHerder TRACE scope cluster

write a record with a key of and the following "logger-cluster-org.apache.kafka.connect.runtime.distributed.DistributedHerder"
value to the config topic:

Config topic record value example

{
 "level": "TRACE"
}

When a worker that has completed startup reads one of these records from the config topic, it will apply the requested logging changes in the exact same
manner as if they were requested via the existing endpoint.PUT /admin/loggers/{logger}

Workers that have not yet completed startup will ignore these records, including if the worker reads one during the read-to-end of the config topic that all
workers perform during startup. Restarting a worker will cause it to discard all cluster-wide dynamic log level adjustments, and revert to the levels specified
in its Log4j configuration. This mirrors the current behavior with per-worker dynamic log level adjustments.

There may be some delay between when a REST request with is received and when all workers have read the corresponding record scope=cluster
from the config topic. The last modified timestamp (details above) can serve as a rudimentary tool to provide insight into the propagation of a cluster-wide
log level adjustment.

Standalone mode

Given that standalone mode by definition only supports one worker, this feature does not seem applicable on the surface. And, for the underlying dynamic
log adjustment logic, no changes will be made. However, for the sake of consistency with distributed mode, the query parameter will still be scope
recognized and, if set to , will cause a 204 response with no body to be returned.cluster

Compatibility, Deprecation, and Migration Plan

Setting logging levels

Existing behavior is preserved as the default for this API. The proposed feature is only available in an opt-in basis.

Getting logging levels

By adding the new field to the response format for these endpoints, we introduce some risk of breaking existing tooling that works with last_modified
the Kafka Connect REST API. If strict deserialization of JSON responses is performed by these tools, then the new field (which will be unrecognized) will
cause failures. These tools will need to be updated to either ignore unrecognized fields, or account for the new field.

Worker downgrades

If a worker is downgraded to an earlier version of Kafka Connect that does not recognize dynamic log adjustment records in the config topic, it will log an
error message in response to reading a record from that topic with an invalid key. There will be no other impact (for example, the worker won't fail and the
availability of its REST API and the connectors/tasks it's assigned will not be compromised).

Test Plan

Unit tests

Ensure that records produced to the config topic have the expected format
Ensure that updates to a logging level are reported with the correct last modified timestamp
Ensure that logging levels that have not been updated have a null last modified timestamp
Ensure that distributed workers that have completed startup correctly handle logging adjustment config topic records
Ensure that distributed workers that have not completed startup ignore logging adjustment config topic records

1.
a.

2.
a.
b.
c.
d.
e.

3.
a.
b.
c.
d.
e.

4.
a.

5.
a.
b.
c.

1.
a.

2.
a.
b.

c.
d.
e.

3.
a.
b.
c.

4.
a.
b.
c.

5.
a.

6.
a.
b.

c.

7.
a.

8.
a.
b.

c.
d.

e.

Ensure that requests to the existing endpoint with no query parameter, and with PUT /admin/loggers/{logger} scope scope=worker
result in the same herder-level behavior as before (mostly likely accomplished by verifying that no interactions with the object have taken Herder
place)
Ensure that requests to the existing endpoint with an unrecognized value for the query parameter PUT /admin/loggers/{logger} scope
result in the same herder-level behavior as before, but also cause a warning log message to be emitted
Ensure that cluster-scoped requests with invalid logging levels are rejected with a 404 response
Ensure that repeated requests to set the same logging level for a namespace do not cause its last modified timestamp to be updated

Integration tests

A new integration test will be added for standalone mode, which will run through this series of scenarios and assertions:

Start a standalone Connect worker
Ensure that the last modified timestamp for all reported logging namespaces is null

Modify the logging level for a specific namespace with no parameterscope
Ensure that the response body is non-empty and matches the same format it had prior to this KIP
Ensure that the last modified timestamp for that namespace is non-null and at least as recent as the time at which the request was issued
Ensure that the logging level for that namespace is correct
Ensure that the last modified timestamp for all other namespaces is still null
Ensure that no other namespaces have been modified

Modify the logging level for a specific namespace with scope=worker
Ensure that the response body is non-empty and matches the same format it had prior to this KIP
Ensure that the last modified timestamp for that namespace is non-null and at least as recent as the time at which the request was issued
Ensure that the logging level for that namespace is correct
Ensure that the last modified timestamp for all other namespaces is still null
Ensure that no other namespaces have been modified

Issue a second request to set the same logging level for the same namespace with scope=worker
Ensure that the last modified timestamp for that namespace is not updated

Modify the logging level for a different namespace with scope=cluster
Ensure that the response body is empty
Ensure that the last modified timestamp and level for that namespace are correct
Ensure that the last modified timestamp and level for all other namespaces remain unchanged

System tests

A single test will be added that runs through this series of scenarios and assertions:

Start a distributed Connect cluster with three workers
Ensure that the last modified timestamp for all reported logging namespaces is null

Modify the logging level for a specific namespace for single worker
Ensure that the response body is non-empty and matches the same format it had prior to this KIP
Ensure that the last modified timestamp for that namespace on the affected worker is non-null and at least as recent as the time at which
the request was issued (some margin of error may be necessary in the highly unlikely but technically possible event that the node
responsible for running tests and the one running the worker have skewed clocks)
Ensure that the logging level for that namespace on the affected worker is reported (via the admin REST API) with the correct level
Ensure that the last modified timestamp for that namespace on all other workers is still null
Ensure that the logging level for that namespace on all other workers is unchanged

Modify the logging level for the root namespace for all workers (using)scope=cluster
Ensure that the response body is empty
Ensure that, after a reasonable timeout, the logging level for all reported namespaces on all workers is reported with the correct level
Ensure that the last modified timestamp for all namespaces on all workers is non-null and at least as recent as the time at which the
request was issued

Modify the logging level for a specific namespace for all workers (using)scope=cluster
Ensure that the response body is empty
Ensure that, after a reasonable timeout, the logging level for that namespace on all workers is reported with the correct level
Ensure that the last modified timestamp for that namespace on all workers is non-null and at least as recent as the time at which the
request was issued

Issue a second request to set the same logging level for the same namespace for all workers (using)scope=cluster
No assertions will be made for this step

Modify the logging level for a different specific namespace for all workers (using)scope=cluster
Ensure that, after a reasonable timeout, the logging level for that namespace on all workers is reported with the correct level
Ensure that the last modified timestamp for that namespace on all workers is non-null and at least as recent as the time at which the
request was issued
Ensure that the last modified timestamp for the namespace affected in steps 4 and 5 is unchanged from when it was tested in step 4 (i.
e., the second request in step 5 did not affect it)

Modify the logging level for the root namespace for all workers (using)scope=cluster
No assertions will be made for this step

Modify the logging level for a specific namespace for a single worker (again)
Ensure that the response body is non-empty and matches the same format it had prior to this KIP
Ensure that the last modified timestamp for that namespace on the affected worker is at least as recent as the time at which the request
was issued
Ensure that the logging level for that namespace on the affected worker is reported with the correct level
Ensure that the last modified timestamp for all namespaces except the modified namespace on the affected worker, and all namespaces
for all other workers, is unchanged since the root level was modified for all workers*
Ensure that the logging levels for all namespaces except the modified namespace on the affected worker, and all namespaces for all
other workers, is unchanged since the root level was modified for all workers*

* - Note that assertions like these ("ensure that <condition> is not met") are difficult to test for; if there is a bug in the logic under test that causes the
condition to eventually be met, but after the point where it is observed, then these tests are liable to report spurious successes. We rely on unit testing
coverage to prevent the kinds of bugs that would cause these spurious successes, as opposed to, e.g., sleeping for <n> seconds before checking the
condition.

No efforts will be made to verify the actual contents of the logs for any workers. was published several years ago and has proven to be effective; KIP-495
since we anticipate that the logic for reading/writing log levels will be largely preserved, it should be enough to rely on the API for querying the Kafka
Connect-reported levels of logging namespaces.

A system test is used here instead of one or more integration tests because the latter colocate workers with the same JVM, making it difficult to distinguish
between changes to the logging levels of a single worker and the whole cluster.

Rejected Alternatives

Request-time modified timestamp tracking

Instead of tracking the last modified timestamp for a logging namespace based on when it was applied by a worker, we could track it by when the request
was received, or when it was written to the config topic. This would provide at least one advantage: assuming all workers are caught up on the config topic,
every worker would give the exact same response for requests to view the levels of loggers. However, it would also be less accurate: users may be
dismayed to see that the logging level for a given namespace had a last modified time of , but that the actual level of logs emitted by that worker for that T
namespace was different until time , for some non-negative number .T+n n

Versioned request format

In order to work better with tools that use strict deserialization, we could add either opt-out or opt-in logic to receive requests from endpoints that provide
levels for logging namespaces with the newly-proposed format (i.e., with the last modified timestamp). This could come, for example, in the form of a new
request header that dictates which version of the API that clients expect.

This change may be smoother for users, but would come with some significant costs:

Higher maintenance burden: we would have to be able to serve requests that expect both kinds of response format
Setting an expensive precedent for the Kafka Connect REST API: unless absolutely necessary, we should encourage consumers of the API to
tolerate unknown fields in order to permit flexibility in future changes we may opt to make that would only involve adding new fields

Persistent logging level updates

Both the new cluster-wide API proposed in this KIP and the existing worker-local API added in only support ephemeral updates: any dynamic KIP-495
logging level changes will be discarded if a worker restarts, and the worker will revert to the levels specified in its Log4j configuration.

The rationale for keeping these updates ephemeral is to continue to give priority to workers' Log4j configuration files, with the underlying philosophy that
this endpoint is still only intended for debugging purposes, as opposed to cluster-wide configuration. Permanent changes can already be made by
tweaking the Log4j file for a worker and then restarting it. If a restart is too expensive for a permanent change, then the change can be applied immediately
via the REST API, and staged via the Log4j configuration file (which will then be used the next time the worker is restarted, whenever that happens).

Future work

More scope types

We may want to add more fine-grained scopes for adjusting log levels. For example, adjusting the log levels of all workers that are running a aConnector
nd/or for a specific connector, or all workers that are running a and/or for a specific connector type. This could be accomplished Task Connector Task
with additional values for the parameter such as or or scope scope=connector:reddit-comments scope=connectorType:BigQuerySink scope

. Or, new query parameters could be added such as =taskType:io.debezium.connector.mysql.MySqlConnectorTask connector=reddit-
, etc.comments

It's likely that this scoping information would have to be embedded in the keys of records written to the config topic, to avoid accidentally compacting other
records whose scopes differ.

Enable by default

If this feature is popular enough, we may consider changing the default of the parameter from to , since this would arguably be scope worker cluster
more convenient and intuitive for users of Kafka Connect.

Config topic cleanup logic

This proposal introduces a second kind of record to the config topic that's used for cluster-wide communication, and is meant to be ignored by any workers
brought up after it has been written (the first kind being the one added in). These kinds of records runs the risk of flooding the config topic with KIP-745
many records that, due to the compacted nature of the topic, will never be discarded, leading to a monotonically-growing topic.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-495%3A+Dynamically+Adjust+Log+Levels+in+Connect
#
https://cwiki.apache.org/confluence/display/KAFKA/KIP-745%3A+Connect+API+to+restart+connector+and+tasks

Practically speaking, it's unclear that this will be an issue. Adjusting logging levels is an incredibly useful feature, but the value it provides is most
applicable when human beings (not automated tools) are debugging unusual circumstances. It's highly unlikely that users or tools will be issuing so many
dynamic log level adjustment requests that the config topic grows to an unmanageable size.

However, we may still want to invest some time in cleanup logic for the config topic, where records like the ones proposed here and introduced in KIP-745
are followed up with corresponding tombstone records, so that when compaction takes place, they are effectively removed from the topic. These
tombstones could possibly be emitted after a fixed delay has elapsed, or possibly after a rebalance has taken place (since every worker reports its current
offset in the config topic).

https://cwiki.apache.org/confluence/display/KAFKA/KIP-745%3A+Connect+API+to+restart+connector+and+tasks

	KIP-976: Cluster-wide dynamic log adjustment for Kafka Connect

