
1.  

2.  

3.  
4.  

1.  
2.  
3.  
4.  
5.  

Streams Runtime Architecture with New Threading

Goals and Key Ideas
Modular Design Breakdowns
Table of Threads
Core Procedures

New Task Creation
Existing Task Shutdown
Active Task Scheduling
State Management for Active Processing Tasks
Committing Active Tasks

Implementation Milestones

This page summarizes the detailed design of the new Kafka Streams runtime with the refactored threading model.

Goals and Key Ideas
Just a quick recap on the motivations of this new design

Improve cost-effectiveness with high utilization of allocated pod resources (CPU and memory primarily). E.g. we should be able to efficiently 
saturated the resources of the given pods before considering to scale and add more pods.
Optimize operational knobs that users need to learn about to make the runtime performant and stable. E.g. users should not need to worry about 
the embedded client’s configuration and stay with the default values most of the time.
Enable scheduling prioritization and isolation between query workloads within a cluster / app. 
A better framework to integrate with cloud-native architectures, E.g. remote state management.

And the key ideas behind the design to tackle on the above goals:

Move from thread-dedicated Kafka clients to  within an instance, with reduced num.connections and improved batching => goal 1).shared clients
Dedicated thread to interact with Kafka clients for blocking calls and misc workloads => goal 1), 2).
Dynamic task assignment with (optional) prioritized scheduling among processing threads => goal 1), 3).
Move state restoration workload from processing threads to a centralized state manager with dedicated threads => goal 2).
Move caching / state management into the centralized state managers as well, which may interact with a remote state service => goal 2), 4).

With the above key ideas in mind, below is the diagram of a single runtime instance (please compare it with the  of a single KS status-quo architecture
runtime), where:

Blue-boxes are modules that interact with each other and accessed by threads,
Yellow arrows indicate threads doing CPU work and move data between modules,
Dotted rectangles represent the unit of workload i.e. tasks,
Horizontal logs represent in-memory buffers, and
Vertical orange logs represent physical storage engines.

https://docs.confluent.io/platform/current/streams/architecture.html


1.  

2.  

3.  

a.  
b.  

c.  

4.  

a.  

b.  

c.  

5.  

a.  
b.  
c.  

6.  

Modular Design Breakdowns
Each Kafka Streams runtime instance would contain the following modules:

One , used to fetch input partition records for assigned active tasks from the Kafka brokers. It has a fetched records buffer which main consumer
contains the compressed record batches fetched by the consumer’s background thread. It is also used to participate in the rebalance protocol to 
assign tasks among instances.
One , used to fetch changelog records for assigned standby tasks as well as restoring active tasks from the Kafka brokers. restore consumer
Similar as the main consumer it also has a buffer of compressed record batches that is fetched by the consumer’s background thread.
A , which:task manager

Maintains the list of assigned active tasks that are ready to be processed (i.e. have completed initialization and restoration).
For each of the maintained active tasks, keeps a decompressed input buffer for its fetched records polled from the main consumer. 
These records are polled and decompressed by the polling thread (see below).
Has a pool of processing threads along with a scheduler that determines dynamically which threads will process which assigned active 
tasks within the task manager. At any given time, each processing thread will process at most a single task, interact with the state 
manager to update the task’s states, and send result records as well as changelog records to the record collector. These threads will 
switch between active tasks periodically (see below).

A , which:state manager

Manages the state stores of all the assigned tasks. Logical states across multiple tasks can be maintained as consolidated physical 
stores.
Has a single restore thread that polls compressed record batches from the restore consumer and apply to the restoring standby and 
active tasks.
Interacts with the remote state management service to checkpoint local states to remote stores, and download state from remote 
storages upon restoration (see  for details.).this doc

A , which:record collector

Maintains the output buffer per outgoing partition (both changelog as well as sink).
Suppress changelog records  before sending to the producer.when possible
The same polling thread would drain from the output buffer and send to the producer.

A single  that gets records from the polling thread, accumulates and compresses in its own send buffer, and finally send the producer
compressed record batches to destination brokers.

Table of Threads
The following table summarizes all the threads in the new runtime. Within the  column, the major resource consumption workload are highlighted.Work

Thread Type Number Interacting 
Modules

Work

Processing 
thread

N (configurable) Task Manager

State Manager

Record 
Collector

Runs in iterations until being shutdown.

Periodically:

Takes the assigned task from the task manager’s scheduler. Grab the lock on the task 
and release locks of the previously processing task.

Within an iteration:

Read record from task’s buffer, process the record, update the state of the task with the 
state manager .(CPU and state update IO)
Put the changelog and result records into the .record collector’s buffer
Check if the processing i  by the pooling thread in order to commit the task.s paused

https://docs.google.com/document/d/1XQTU-tN_FLxVOHQKAN0UCM9oeZ4JYMuEWHvmWn3eHe4/edit


Polling thread 1 (not configurable); Main 
Consumer

Task Manager

Producer

Record 
Collector

Runs in iterations until being shutdown.

Within an iteration:

Fetch from main consumer’s compressed record batch buffer, put the polled record into 
corresponding task’s input buffers .(CPU decompressing)
Peek into the record collector’s output buffer, drain the records when necessary, and 
send to producer’s accumulator.
Check the exception queues from other threads and handle accordingly (see the other doc
for details).

During the main consumer’s poll call, it may:

Trigger rebalance callbacks, in which it will:

Create/recycle and initialize newly assigned tasks, and sent the newly created tasks 
into the state manager if restoration is necessary; otherwise send them to the task 
manager.
Close those revoked tasks from the task managers.

Commit tasks upon requests or on timely manners, in which it will:

Notify all the stream threads to  their current assigned tasks.stop processing
For those tasks that have stopped processing, flush their state with the state 
manager .(state IO)
Drain the record collector and flush the producer to make sure all outgoing records 
are sent and acked.
Execute the commit procedure (either EOS or ALOS, which would rely on different 
client’s APIs, )CPU on blocking calls
Notify all the stream threads to resume processing their tasks.

Consumer’s 
background 
thread

2; one from the main consumer 
and one from the restore 
consumer

Main 
Consumer

Restore 
Consumer

Doing IO on network socket to receive fetch responses (network IO)
Put parsed record batch from read response into consumer’s buffer
Group rebalance related computations

Producer’s 
background 
thread

1; from the producer Producer
Doing IO on network socket to send produce requests (  and network CPU compressing
IO)
Transaction related computations

Admin’s 
background 
thread

1; from the admin Admin
Doing IO on network socket to send various admin requests (network IO)

Restoration 
thread

1 (not configurable) Restore 
Consumer

State Manger

Get notified when new tasks are added / remove for restoration.
Fetch from restore consumer’s record batch buffer ( )CPU decompressing
May need to translate the record batch into state format if direct byte copy-paste cannot 
be done (CPU deserialization and reserialization)
Doing IO to apply the translated state write-batch to the state stores (disk IO work)

Cleanup thread 1 (not configurable) State Manger
Periodically check local state dir, and doing IO work to clean up states (disk IO)

RocksDB 
Metrics 
Triggering thread

1 (not configurable) State Manger
Periodically read the stats object of the RocksDB instances and update the metrics 
registry

Core Procedures
In this section we describe the procedures of certain core events.

New Task Creation

Polling thread gets the newly assigned tasks from the rebalance callback.

If the task does not exist at all, it will create and initialize the task. For standby tasks and active tasks that needs restoration, it will send them to 
the state manager.

During the initialization of the task, the local metadata checkpoint would be loaded first; if the checkpoint is not found, treat it as the 
metadata pointing at the beginning.
If the local state supports transactions, call the state to revert to the snapshot indicated by the loaded metadata.

https://cwiki.apache.org/wiki/spaces/KSTREAMS/pages/2791571546


1.  
2.  

3.  

If the task exist as an active task and now assigned as a standby task, try to recycle it as standby: if the task was not in task manager (which 
means it’s in the state manager), send a notification to the state manager to to let it stop restoring the state and , send it back to the task manager
and then after recycling it into a standby task, send it back to the state manager; otherwise directly recycle it inside the task manager and then 
send the task to the state manager.
If the task exist as a standby task and now assigned as an active task, try to recycle it as active: the task has to be in the state manager for now, 
so send a notification event to the state manager to let it stop restoring the state and send it back to the task manager. The task manager would 

. The task would then be sent back to state manager to complete the recycle it to an active task which would still be in the restoring state
restoration before it would be returned back to the task manager.

From the task’s point of view, it should be either at the task manager, accessed by the polling thread / processing threads; or at the state manager, 
accessed by the restoration thread, but never at both.

Existing Task Shutdown

Polling thread gets the revoked tasks from the rebalance callback.

If the task was not in the task manager (which means it’s in the state manager, either a standby, or an active task which’s still restoring), send a 
CLOSE event to the state manager.  does not require committing the task, but only updating the state The tasks closure inside the state manager
checkpoint.
Otherwise, close the processing active task inside the task manager directly after committing them.

Active Task Scheduling

Active tasks inside the task manager are ready to be processed, and there is a stream thread pool that grabs those tasks dynamically and process them. 
Each task inside the task manager has an  that can be grabbed by at most one thread at a time.exclusive lock

The scheduling algorithm can be extensible with new requirements such as the new to assign priorities among queries (and hence their corresponding 
tasks). For example, A simple scheduling algorithm would work in the following way:

Each stream thread would periodically look into the task manager looking for tasks to process. The tasks would be sorted by the number of 
buffered input records, so that tasks with more buffered records .would be picked first
The thread would grab the lock on the task so that no other threads would be process this selected task. It would then move on to process the 
task’s records continuously, until 1) a pre-defined period of time has elapsed, or 2) the buffered input records have been exhausted. After that it 
will release the lock of the task and try to pick the next “high-priority“ tasks.

State Management for Active Processing Tasks

The state management procedure would be “extracted“ out of the tasks themselves and be handled within a consolidated module, a.k.a. the State 
Manager. Each task’s processing still interacts with the “state store“ APIs to read from/write into, and flush the states. But the actual implementations are 
provided by this State Manager which could optionally maintain multiple logical state stores (even from different tasks) into the same physical store 
engines.

The state store APIs are still layere but the layering would be slightly changed as “metered  change-logged  cached“ where the caching layer is managed 
by the state manager. More specifically:

Stream thread would touch on the metered layer to trigger the recording of the state store metrics.
Stream thread would touch on the change-logged layer to send the changelog record into the record collector (note it would not call on the 
producer, as it’s done by the polling thread).
Stream thread would touch on the state manager to finally update the state, and it’s abstracted away from the thread whether it only reaches the 
cache or get to the persistent layer at all. Nevertheless, reads from the state should be able to return uncommitted states.

Committing Active Tasks

Any task’s progress are tracked by the running metadata including “position“ and “time“, which is also used to identify the state snapshot of the task. 

For standby tasks and restoring active tasks that are maintained in the state manager, they do not need to execute a full committing process. Instead, the 
state manager only need to periodically persist the advanced task metadata locally (when we have remote state management services, we may still need 
to persist the task’s metadata which would guide the state local cache warmup process).

As for those active processing tasks within the task manager, since we only have a single producer/consumer pair to execute the committing process, we 
need to always commit all the tasks at once. More specifically, we need to execute the following steps when we want to commit:

Flush the state of all active tasks within the task manager. If the state supports transactional updates, let the flush return a token which would be 
written as part of the task metadata to be persisted.
Write the  into the record collector.changelog record of the metadata
Drain all the records inside the record collector and flush the producer.
Trigger the corresponding producer / consumer API depending on the processing mode (EOS or ALOS) to complete the commit.
Persist the  locally.  this step can be done outside the EOS committing process and not be atomic, since even if we advanced task metadata NOTE
failed before this last step, we can still either 1) revert the local state to the last checkpoint and complete the restoration of the latest snapshot, or 
2) bootstrap from the beginning to the latest snapshot.



1.  

2.  

3.  

1.  

2.  

3.  

Implementation Milestones
Here’s a proposal for achieving the above architecture in a step-by-step manner, where each step still leaves the architecture as a workable state.

Step Scope Benefits

Move restoration out of 
processing thread Add a state updater module, which would be a smaller scope of the final 

state manager.
Create a restoration thread inside the state updater that fetches from the 
restore consumer and apply the batches to restore states.
Maintain the state manager within each processing , so that we have thread
a total of N state updater / restore thread, where N == number of stream 
threads.

Restoration would not impact 
processing thread from being 
kicked out of the group and 
triggering rebalance

Una

ble 

to 

ren

der 

Jira 

issu

es 

mac

ro, 

exe

cuti

on 

erro

r.

 

Introduce the processing 
threads Augment the record collector with the output buffer. Let the changelog 

records to be buffered in the record collector
Add a total number of N processing threads, N == configured stream 
threads. The original stream thread would still be fetching from the 
consumer and put records into the input buffer, and draining records from 
the record collector and send to the producer.
The stream thread still executes the committing procedure, and the stream 
assignor does not need to be modified.

Reduce the likelihood of long 
blocking due to record 
processing

Una

ble 

to 

ren

der 

Jira 

issu

es 

mac

ro, 

exe

cuti

on 

erro

r.

 

Una

ble 

to 

ren

der 

Jira 

issu

es 

mac

ro, 

exe

cuti

on 

erro

r.

Una

ble 

to 

ren

der 

Jira 

issu

es 

mac

ro, 

exe

cuti

on 

erro

r.



1.  

1.  

2.  
3.  
4.  
5.  

1.  

2.  
3.  
4.  

1.  

2.  

Complete KIP-588
Complete KIP-588 on the broker side and add an internal config in 
producer to handle ProducerFenced as TransactionTimedOut

Let the Streams to be more 
resilient with EOS error handling

Una

ble 

to 

ren

der 

Jira 

issu

es 

mac

ro, 

exe

cuti

on 

erro

r.

 

Consolidate the polling 
threads into a single 
thread

NOTE: this is a major 
upgrade barrier and 
would be better included 
in a major release.

Only maintain one consumer/producer client per instance instead of per 
thread.
Reduce the number of restoration thread and the .polling thread to one
Simplify the task assignor to only do the per-client assignment
Within the client, let processing thread dynamically choose tasks to process
Poll thread would synchronize with processing threads to commit tasks.

Reduce the number of 
embedded clients as stated 
above

Refactor the task 
committing procedure 
and exception handling 
logic

Refactor the shared record collector module to accumulate and suppress 
sending records.
Let the poll thread to take the records and send to the shared producer.
Decouple the state store caching from emitting, to always emit downwards.
Also include completing KIP-691.

Make the runtime more resilient 
to errors.

Move state stores into 
the state manager Augment the state updater module added in the “Move restoration out of 

processing thread“ step, to manage all physical state stores of all tasks 
(including both restoring and active processing).
Integrate with the proposed metadata management inside the state 
manager.

Efficient IO and less footprint in 
physical state stores.

Integration with proposed cloud 
state storage.

Una

ble 

to 

ren

der 

Jira 

issu

es 

mac

ro, 

exe

cuti

on 

erro

r.


	Streams Runtime Architecture with New Threading

