
KIP-985: Add reverseRange and reverseAll query over kv-
store in IQv2

Status
Motivation
Proposed Changes
Test Plan
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: [Change the link from the KIP proposal email archive to your own email thread]here

Voting thread: https://lists.apache.org/thread/xxyb5yyqrsdxsyxxbjhvnlxw5fl8xd0c

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The concepts of and are not tied to any specific method or class. Rather, they represent functionalities we wish to achieve. reverseRange reverseAll
Currently, with , we can use methods like , , , and .RangeQuery withRange() withLowerBound() withUpperBound() withNoBounds()

Utilizing these, the query results are ordered based on the serialized byte[] of the keys, not the 'logical' key order.

Take IQv2StoreIntegrationTest as an example: we have two partitions with four key-value pairs:

<0,0> in Partition0
<1,1> in Partition1
<2,2> in Partition0
<3,3> in Partition1

When we use , the returned result is:RangeQuery.withRange(1,3)

Partition0: [2]
Partition1: [1, 3]

To achieve the functionalities of and , we can introduce a method named for reversed queries. reverseRange reverseAll withDescendingKeys()
For example, by using , the expected result would be:RangeQuery.withRange(1,3).withDescendingKeys()

Partition0: [2]
Partition1: [3, 1]

This means the results are in the reverse order of their keys.

To ensure that we can achieve this functionality, the keys in both and should be sorted. We know that kRocksDB InMemoryKeyValueStore RocksDB
eys are inherently sorted. After investigation, we found that uses a , implying its keys are also sorted. Therefore, InMemoryKeyValueStore TreeMap
performing the aforementioned queries is feasible.

Proposed Changes

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread/58g443pbv22qjxxj965gp5o54c7g3k5y
https://lists.apache.org/thread/xxyb5yyqrsdxsyxxbjhvnlxw5fl8xd0c

According to KIP-968, this KIP introduces the public enum ResultOrder to determine whether keys are sorted in ascending or descending or unordered
order. Order is based on the serialized byte[] of the keys, not the 'logical' key order. employs the withDescendingKeys() and
withAscendingKeys() methods to specify that the keys should be ordered in descending or ascending or unordered sequence, and the resultOrder()
method to retrieve the value of enum value in ResultOrder . I've incorporated these variables and methods into the RangeQuery class and modified some
method inputs. As a result, we can now use withDescendingKeys() to obtain results in reverse order and use withAscendingKeys to obtain the result
in ascending order.

/**
 * Interactive query for issuing range queries and scans over KeyValue stores.
 * <p>
 * A range query retrieves a set of records, specified using an upper and/or lower bound on the keys.
 * <p>
 * A scan query retrieves all records contained in the store.
 * <p>
 */
@Evolving
public final class RangeQuery<K, V> implements Query<KeyValueIterator<K, V>> {
 ...

 /**
 * Determines if the serialized byte[] of the keys in ascending or descending or unordered order.
 * Order is based on the serialized byte[] of the keys, not the 'logical' key order.
 * @return return the order of returned records based on the serialized byte[] of the keys (can be
unordered, or in ascending or in descending order).
 */
 public ResultOrder resultOrder()

 /**
 * Set the query to return the serialized byte[] of the keys in descending order.
 * Order is based on the serialized byte[] of the keys, not the 'logical' key order.
 * @return a new RangeQuery instance with descending flag set.
 */
 public RangeQuery<K, V> withDescendingKeys()

 /**
 * Set the query to return the serialized byte[] of the keys in ascending order.
 * Order is based on the serialized byte[] of the keys, not the 'logical' key order.
 * @return a new RangeQuery instance with ascending flag set.
 */
 public RangeQuery<K, V> withAscendingKeys()
 ...
}

According to KIP-968, we introduce a public enum ResultOrder.

ResultOrder enum
It helps with specifying the order of the returned results by the query.

ResultOrder

package org.apache.kafka.streams.query;

public enum ResultOrder {
 ANY,
 ASCENDING,
 DESCENDING
}

Test Plan

This time, our goal is to implement reverseRange and reverseAll functionalities. While these terms are used for clarity, in practice, they correspond to
RangeQuery.withRange().withDescendingKeys() and RangeQuery.withNoBounds().withDescendingKeys(), respectively. To ensure the
accurate retrieval of results for both functionalities, adjustments to IQv2StoreIntegrationTest are required. In our previous approach, we stored
query results in a set, which doesn't maintain order. I've transitioned to using a list for storing query results, enabling us to distinguish between rangeQuery
and reverseQuery. Here, rangeQuery refers to standard queries (those not using withDescendingKeys()) such as withRange(), withLowerBou
nd(), withUpperBound(), and withNoBounds(). In contrast, reverseQuery denotes queries that employ the withDescendingKeys() method.

We've transitioned the expectedValue from a Set to a List and arranged the partition numbers in order. This organization assists us in predicting the
results. If the partition numbers were random, predicting the outcome would be challenging. Ultimately, this enables us to obtain and store the answer in
the expectedValue. Consequently, the results between rangeQuery and reverseQuery will differ.

IQv2StoreIntegrationTest

public class IQv2StoreIntegrationTest {
...
 @SuppressWarnings("unchecked")
 public <V> void shouldHandleRangeQuery(
 final Optional<Integer> lower,
 final Optional<Integer> upper,
 final boolean isKeyAscending,
 final Function<V, Integer> valueExtactor,
 final List<Integer> expectedValue) {

 final RangeQuery<Integer, V> query;

 if (isKeyAscending) {
 query = RangeQuery.withRange(lower.orElse(null), upper.orElse(null));
 } else {
 query = (RangeQuery<Integer, V>) RangeQuery.withRange(lower.orElse(null), upper.orElse(null)).
withDescendingKeys();
 }
 ...
 } else {
 final List<Integer> actualValue = new ArrayList<>();
 ...
 final List<Integer> partitions = new ArrayList<>(queryResult.keySet());
 partitions.sort(null);
 for (final int partition : partitions) {
 ...
 }
 ...
}

Compatibility, Deprecation, and Migration Plan
Utilizing the existing RangeQuery class, we can make some modifications to realize the concepts of and . To reverseRange reverseAll
reiterate, and are not classes or methods but merely concepts.reverseRange reverseAll
Since nothing is deprecated in this KIP, users have no need to migrate unless they want to.

Rejected Alternatives
After initial plans to create a ReverseRangeQuery from the ground up, we opted to leverage existing code from the RangeQuery class following further
discussions.

ReverseRangeQuery

@Evolving
public final class ReverseRangeQuery<K, V> implements Query<KeyValueIterator<K, V>> {

 private final Optional<K> lower;
 private final Optional<K> upper;

 private ReverseRangeQuery(final Optional<K> lower, final Optional<K> upper) {
 this.lower = lower;
 this.upper = upper;
 }

 /**
 * Interactive range query using a lower and upper bound to filter the keys returned.
 * @param lower The key that specifies the lower bound of the range
 * @param upper The key that specifies the upper bound of the range
 * @param <K> The key type
 * @param <V> The value type
 */
 public static <K, V> ReverseRangeQuery<K, V> withRange(final K lower, final K upper) {
 return new ReverseRangeQuery<>(Optional.ofNullable(lower), Optional.ofNullable(upper));
 }

 /**
 * Interactive range query using an upper bound to filter the keys returned.
 * If both <K,V> are null, RangQuery returns a full range scan.
 * @param upper The key that specifies the upper bound of the range
 * @param <K> The key type
 * @param <V> The value type
 */
 public static <K, V> ReverseRangeQuery<K, V> withUpperBound(final K upper) {
 return new ReverseRangeQuery<>(Optional.empty(), Optional.of(upper));
 }

 /**
 * Interactive range query using a lower bound to filter the keys returned.
 * @param lower The key that specifies the lower bound of the range
 * @param <K> The key type
 * @param <V> The value type
 */
 public static <K, V> ReverseRangeQuery<K, V> withLowerBound(final K lower) {
 return new ReverseRangeQuery<>(Optional.of(lower), Optional.empty());
 }

 /**
 * Interactive scan query that returns all records in the store.
 * @param <K> The key type
 * @param <V> The value type
 */
 public static <K, V> ReverseRangeQuery<K, V> withNoBounds() {
 return new ReverseRangeQuery<>(Optional.empty(), Optional.empty());
 }

 /**
 * The lower bound of the query, if specified.
 */
 public Optional<K> getLowerBound() {
 return lower;
 }

 /**
 * The upper bound of the query, if specified
 */
 public Optional<K> getUpperBound() {
 return upper;
 }
}

	KIP-985: Add reverseRange and reverseAll query over kv-store in IQv2

