
1.
2.
3.
4.

KIP-986: Cross-Cluster Replication

Status
Motivation

Goals
Non-Goals

Public Interfaces
User Interface
Data Semantics

Relation to Intra-Cluster replication
Replication Mode
Network Partition Behavior
Unclean Link Recovery
Remote and Local Logs
Namespace Reservation

Networking
User Stories

Disaster Recovery (multi-zone Asynchronous)
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Propose improvements to MirrorMaker 2 or a new MirrorMaker 3
Establish mechanisms for improving "stretched clusters" that have a heterogeneous network between nodes, aka "rack awareness"
Propose a layer above Kafka to provide virtual/transparent replication

Note that this proposal is incomplete, and tries to explore the UX of the feature before establishing the technical requirements and limitations. As we
discover what the technical limitations are, some of the UX may need to change, and some semantics of the feature may need to be softened.

To Co-Authors: None of the below contents is final or necessarily correct. Please feel free to edit this document directly and summarize your changes on
the mailing list afterwards.

Status
Current state: Under Discussion

Discussion thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Since before the implementation of MirrorMaker 1, there has been a desire to replicate data between Kafka clusters. This can be done for a many different
reasons including but not limited to: disaster recovery, latency optimization, load shaping, security, and data protection. Currently the open source tooling
for Kafka replication consists of MirrorMaker 1 and MirrorMaker 2, which both fall short in many modern use-cases.

They run in external processes which may experience outages when both Kafka clusters are otherwise healthy and accepting clients
They represent an additional operational burden beyond just running Kafka
Replication does not preserve offsets of individual records
Replication does not preserve exactly-once-semantics for records & consumer offsets

Goals

Replicate topics and other associated resources between intentionally separate Kafka clusters
Offsets for replicated records should be the same as in the origin Kafka
Preserve exactly-once-semantics for replicated records

Non-Goals

Implement multi-leader partitions that accept writes on multiple brokers.
Perform distributed consensus to elect partition leaders across multiple clusters
Provide transparent failover of single clients between Kafka clusters

Public Interfaces

https://lists.apache.org/thread/4563fqdcwlqwjqlm7mbj8wftx1rpo0yd
https://issues.apache.org/jira/browse/KAFKA-15528

1.
2.

3.
4.

5.

6.
7.

8.

9.

User Interface

New AdminClient methods for managing Replication Links on both the source and destination clusters
A single cluster can participate in arbitrarily many links, and both a source and destination simultaneously.
Links accept a configuration, including topics.regex and consumer.groups.regex, and a mode selector that accepts either Asynchronous or
Synchronous

Can a link change it's topics.regex or consumer.groups.regex? What happens if a topic or group is created or deleted while the link is in-
sync? Does the link change state?
Can a link change from synchronous to asynchronous?

Existing Consumers & Producers can access replicated topics without an upgrade or reconfiguration.
Metrics allow observation of the state of each partition included in the replication link and progress of the replication flow (lag, throughput, etc)
During and shortly after network partitions, the link will be out-of-sync while it catches up with the source ISR
Links can be manually disconnected, after which the destination topic becomes writable.

Can we manually reverse a link while keeping consistency?
Can we reconnect a link, truncating the target if it has diverged?

Data Semantics

Relation to Intra-Cluster replication

Cross-Cluster Replication is similar to Intra-Cluster replication, as both cross-cluster topics and intra-cluster replicas:

Have the same configuration as their source
Have the same offsets for records
Have the same number of partitions

They are different in the following ways, as cross-cluster replicas:

Are subject to the target cluster's ACL environment
Are not eligible for fetches from source cluster consumers
Have a separate topic-id

Replication Mode

Asynchronous mode allows replication of a record to proceed after the source cluster has ack'd the record to the producer.
Maintains existing latency of source producers, but provides only single-topic consistency guarantees

Synchronous mode requires the source cluster to delay acks () for a producer until after the record has been replicated to all or delay commits?
ISRs for all attached synchronous replication links.

Also applies to consumer group offsets submitted by the consumer or transactional producer
Increases latency of source producers, in exchange for multi-topic & consumer-offset consistency guarantees

Network Partition Behavior

We must support network partition tolerance, which requires choosing between consistency and availability. Availability in the table below means that the
specified client can operate, at the expense of consistency with another client. Consistency means that the specified client will be unavailable, in order to
be consistent with another client.

Mode Asynchronous Mode Synchronous Mode

Link State Startup Out-of-sync Disconnected Startup Out-of-sync Disconnected

Source Consumers Available1 Available1 Available1,2 Available1 Available1 Available1,2

Source Non-Transactional Producers Available1 Available1 Available1,2 Available1 Available1 Available1,2

Source Transactional Producers Available3 Available4 Available2 Available3 Consistent5 Available2

Target Consumers in Non-Replicated Group Available6 Available6 Available2 Consistent7 Consistent8 Available2

Target Consumers in Replicated Group Consistent9 Consistent9 Available2 Consistent7,9 Consistent9 Available2

Target Producers Consistent10 Consistent10 Available2 Consistent10 Consistent10 Available2

Source clients not involved in transactions will always prioritize availability over consistency
When the link is permanently disconnected, clients on each cluster are not required to be consistent and can show whatever the state was when
the link was disconnected.
Transactional clients are available during link startup, to allow creating links on transactional topics without downtime.
Transactional clients are available when asynchronous links are out-of-sync, because the source cluster is allowed to ack transactional produces
while async replication is offline or behind.
Transactional clients are consistent when synchronous links are out-of-sync, because the destination topic is readable by target consumers.
Transactional produces to a topic with an out-of-sync synchronous replication link should timeout or fail.
Consumers of an asynchronous replicated topic will see partial states while the link is catching up
While starting up a synchronous replicated topic, consumers will be unable to read the partial topic. This allows source transactional produces to
proceed while the link is starting (3)
Consumers of a synchronous replicated topic should always see the same contents as the source topic

9.
10.

1.

Consumers within a replicated consumer group will be unable to commit offsets, as the offsets are read-only while the link is active.
Producers targeting the replicated topic will fail because the topic is not writable until it is disconnected. Allowing a parallel-write to the replicated
topic would be inconsistent.

Unclean Link Recovery

After a link is disconnected, the history of the two topics is allowed to diverge arbitrarily, as each leader will accept writes which are uncorrelated. There
should be a way to reconnect a link, and reconcile the two histories by choosing one to overwrite the other.

This process can be manually-initiated, and involves choosing which direction the link should flow, and what the last shared offset was before the
divergence occurred. Topics on the destination will be truncated to the last shared offset, and cross-cluster-replication will be restarted.

For a single link, we can remember what the last offset received by the target was prior to the disconnect, and truncate from there.

For example, a link AB is set up, A and B are partitioned, and the link AB is disconnected, and then the A/B network partition resolves. A and B diverge,
and the operator chooses B as the new "source". A link BA is set up, and A is truncated to the last common offset before replication starts.

For multiple links, and links that didn't carry traffic, the last common offset depends on where the replicated data came from. Perhaps we can remember
the provenance (cluster-id/topic-id) of ranges of offsets, and find the most recent offset which originated in the same topic amongst the clusters? Or force
the operator/management layer to decide the truncation offset. Anything other than comparing hashes of messages or byte-for-byte equality checks.

For example two links AB and AC are set up, A is partitioned from B and C, B is chosen as the new leader, the links AB and AC should be disconnected,
and a link BC connected. B and C will then need to perform unclean link recovery, determining the last offset that they both got from A prior to the
disconnect. C then truncates to that common offset, and begins replicating from B.

Remote and Local Logs

Remote log replication should be controlled by the second tier's provider.
Remote logs can be referenced if not replicated by the second tier's provider so that replicated Kafka topics reference the source remote log
storage.

Namespace Reservation

When a link is established, or reconfigured, it will reserve topic and consumer group namespaces in the destination cluster. These reservations will prevent
coincidentally named topics and consumer groups from being created which would conflict with topics/consumer groups that could be created later in the
source cluster.

When a client tries to create a resource which has a namespace reservation, creating that resource should fail (with a new error? with the most
)closely related existing error?

When a link is established or reconfigured, and the necessary reservation conflicts with existing topics or existing reservations, those resources
will become managed by the replication link.
If a link is reconfigured such that a managed topic is no longer included, that topic will become disconnected, similar to if the link was
disconnected for all topics.

Networking

The network path between Kafka clusters is assumed to have less uptime, lower bandwidth, and higher latency than the intra-cluster network,
and have more strict routing constraints.
Network connections for replication links can proceed either sourcetarget or targetsource to allow one cluster to be behind a NAT (can we support
NAT punching as a first-class feature, to allow both clusters to be behind NAT?)
Allow for simple traffic separation of cross-cluster connections and client/intra-cluster connections (do we need to connect to something other than
the other cluster's advertised listeners?)

Briefly list any new interfaces that will be introduced as part of this proposal or any existing interfaces that will be removed or changed. The purpose of this
section is to concisely call out the public contract that will come along with this feature.

A public interface is any change to the following:

Binary log format
The network protocol and api behavior
Any class in the public packages under clientsConfiguration, especially client configuration

org/apache/kafka/common/serialization
org/apache/kafka/common
org/apache/kafka/common/errors
org/apache/kafka/clients/producer
org/apache/kafka/clients/consumer (eventually, once stable)

Monitoring
Command line tools and arguments
Anything else that will likely break existing users in some way when they upgrade

User Stories

Disaster Recovery (multi-zone Asynchronous)

1.
2.

3.

4.
5.

6.
7.

I administrate multiple Kafka clusters in different availability zones
I have a performance-sensitive application that reads in all zones but writes to only one zone at a time. For example, an application that runs
consumers in zones A and B to keep caches warm but disables producers in zone B while zone A is running.
I set up an asynchronous Cross-Cluster replication link for my topics and consumer groups from cluster A to cluster B. While the link is being
created, applications in zone A are performant, and zone B can warm it's caches with historical data as it is replicated.
I do the same with cluster A and cluster C (and others that may exist)
When zone A goes offline, I want the application in zone B to start writing. I manually disconnect the AB cross-cluster link, and trigger the
application in zone B to begin writing.
What happens to cluster C? Can we connect BC quickly? What happens if C is ahead of B and truncating C breaks the cluster C consumers?
When zone A recovers, I see that the history has diverged between zone A and B. I manually delete the topics in zone A and re-create the
replication link in the opposite direction.

Proposed Changes
Describe the new thing you want to do in appropriate detail. This may be fairly extensive and have large subsections of its own. Or it may be a few
sentences. Use judgement based on the scope of the change.

Compatibility, Deprecation, and Migration Plan
Both the source and target clusters should have a version which includes the Cross-Cluster Replication feature
Clusters which support the Cross-Cluster Replication feature should negotiate on the mutually-supported replication semantics
If one of the clusters is downgraded to a version which does not support Cross-Cluster Replication, the partner cluster's link should fall out-of-
sync.

Test Plan
Describe in few sentences how the KIP will be tested. We are mostly interested in system tests (since unit-tests are specific to implementation details).
How will we know that the implementation works as expected? How will we know nothing broke?

Rejected Alternatives

Propose improvements to MirrorMaker 2 or a new MirrorMaker 3

Mirror Maker's approach to using public clients to perform replication limits the guarantees that replication provides. In order to strengthen these
guarantees, we would need to add capabilities to the public clients, or rely on internal interfaces, neither of which is desirable.

Establish mechanisms for improving "stretched clusters" that have a heterogeneous network between
nodes, aka "rack awareness"

The use-case for a stretched cluster is different than cross-cluster replication, in that a stretched cluster shares ACLs, topic-ids, principals, secrets, etc.
Cross-Cluster Replication is intended to be used across data protection domains, which currently require the use of distinct clusters.

Propose a layer above Kafka to provide virtual/transparent replication

This is currently possible to implement with the Kafka public APIs, but doesn't actually replicate the data. This makes it unsuitable for disaster recovery,
latency optimization, and load-shaping use-cases where connectivity to the source topic/replicas may be lost.

	KIP-986: Cross-Cluster Replication

