
KIP-989: RocksDB Iterator Metrics

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread:

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
RocksDB must be closed after use, to prevent memory leaks due to . Pinned blocks can currently be tracked Iterators blocks being "pinned" in-memory
via the per-store metric. However, it's common to share the Block Cache among all stores in block-cache-pinned-usage (and even recommended)
an application, to enable users to globally bound native memory used by RocksDB. This results in the reporting the same block-cache-pinned-usage
memory usage for every store in the application, irrespective of which store is actually pinning blocks in the block cache.

To aid users in finding leaked Iterators, as well as identifying the cause of a high number of pinned blocks, we introduce two new metrics.

Public Interfaces
New Metrics

Name Type Scope Description

number-open-iterators Value stream-state-metrics The current number of Iterators on the store that have been created, but not yet closed.

iterator-duration-avg Average stream-state-metrics The average time spent between creating an Iterator and closing it, in milliseconds.

iterator-duration-total Total stream-state-metrics The total time spent between creating Iterators and closing them, in milliseconds.

Proposed Changes
The metric will periodically record the difference between the and number-open-iterators NO_ITERATOR_CREATED NO_ITERATOR_DELETED
RocksDB Tickers. This value is likely to be non-zero in any application that heavily uses Iterators, even if they're being used properly and are not a
performance concern. Users would want to monitor this metric and take action if:

It is continually increasing, which would indicate an "Iterator leak"; i.e. one or more Iterators where is not being called.close()
It is consistently very high, which would indicate a large number of concurrently open Iterators. This can be an indicator that some Iterators are
taking a long time to complete processing, perhaps because the code being executed within each iteration performs poorly.

The metrics will be updated whenever an Iterator's close() method is called, recording the time since the Iterator was created. The iterator-duration
measurement will be conducted using and reported in milliseconds, with a fractional component approximating the sub-millisecond System.nanoTime()
precision. e.g. , would be approximately 2 milliseconds, 337 microseconds and 583 nanoseconds. Users would want to monitor this metric and 2.337583
take action if:

The , or rate of change of the , is consistently high, or continues to climb indefinitely. This would indicate a performance problem with avg total
code executed within each iteration of an Iterator.
The metric reports 0, or no data, despite the application making use of RocksDB Iterators. This can indicate that the Iterators being used are not
having their method called by the user, which would cause a memory leak.close()

 Unable to render Jira issues macro, execution

error.

https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#blocks-pinned-by-iterators
https://docs.confluent.io/platform/current/streams/developer-guide/memory-mgmt.html#rocksdb

Compatibility, Deprecation, and Migration Plan
No impact is expected for existing users, as no existing interfaces or behaviour is being changed.
The performance overheads of tracking the opening/closing of Iterators is expected to be negligible to the point that it will not be measurable in
real-world applications.

Test Plan
RocksDBMetricsRecorderTest will be updated to include the new metrics.

Rejected Alternatives
No alternatives were presented or considered.

	KIP-989: RocksDB Iterator Metrics

