
LanguageManual Cli
Hive CLI

Hive CLI
Deprecation in favor of Beeline CLI

Hive Command Line Options
Examples
The hiverc File
Logging
Tool to Clear Dangling Scratch Directories

Hive Batch Mode Commands
Hive Interactive Shell Commands

Hive Resources
HCatalog CLI

$HIVE_HOME/bin/hive is a shell utility which can be used to run Hive queries in either interactive or batch mode.

Deprecation in favor of Beeline CLI
HiveServer2 (introduced in Hive 0.11) has its own CLI called , which is a JDBC client based on SQLLine. Due to new development being focused Beeline
on HiveServer2, in favor of Beeline ().Hive CLI will soon be deprecated HIVE-10511

See and in the HiveServer2 documentation.Replacing the Implementation of Hive CLI Using Beeline Beeline – New Command Line Shell

Hive Command Line Options

To get help, run " " or " ".hive -H hive --help
Usage (as it is in Hive 0.9.0):

usage: hive
 -d,--define <key=value> Variable substitution to apply to Hive
 commands. e.g. -d A=B or --define A=B
 -e <quoted-query-string> SQL from command line
 -f <filename> SQL from files
 -H,--help Print help information
 -h <hostname> Connecting to Hive Server on remote host
 --hiveconf <property=value> Use value for given property
 --hivevar <key=value> Variable substitution to apply to hive
 commands. e.g. --hivevar A=B
 -i <filename> Initialization SQL file
 -p <port> Connecting to Hive Server on port number
 -S,--silent Silent mode in interactive shell
 -v,--verbose Verbose mode (echo executed SQL to the
 console)

Note: The variant " " is supported as well as " ".-hiveconf --hiveconf

Examples

See for examples of using the option.Variable Substitution hiveconf

Example of running a query from the command line

$HIVE_HOME/bin/hive -e 'select a.col from tab1 a'

Version information

As of Hive 0.10.0 there is one additional command line option:

--database <dbname> Specify the database to use

https://cwiki-test.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline�NewCommandLineShell
https://issues.apache.org/jira/browse/HIVE-10304
https://issues.apache.org/jira/browse/HIVE-10511
https://cwiki-test.apache.org/confluence/display/Hive/Replacing+the+Implementation+of+Hive+CLI+Using+Beeline
https://cwiki-test.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline�NewCommandLineShell
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution

Example of setting Hive configuration variables

$HIVE_HOME/bin/hive -e 'select a.col from tab1 a' --hiveconf hive.exec.scratchdir=/home/my/hive_scratch
--hiveconf mapred.reduce.tasks=32

Example of dumping data out from a query into a file using silent mode

$HIVE_HOME/bin/hive -S -e 'select a.col from tab1 a' > a.txt

Example of running a script non-interactively from local disk

$HIVE_HOME/bin/hive -f /home/my/hive-script.sql

Example of running a script non-interactively from a Hadoop supported filesystem (starting in)Hive 0.14

$HIVE_HOME/bin/hive -f hdfs://<namenode>:<port>/hive-script.sql
$HIVE_HOME/bin/hive -f s3://mys3bucket/s3-script.sql

Example of running an initialization script before entering interactive mode

$HIVE_HOME/bin/hive -i /home/my/hive-init.sql

The hiverc File

The CLI when invoked without the option will attempt to load $HIVE_HOME/bin/.hiverc and $HOME/.hiverc as initialization files.-i

Logging

Hive uses log4j for logging. These logs are not emitted to the standard output by default but are instead captured to a log file specified by Hive's log4j
properties file. By default Hive will use in the directory of the Hive installation which writes out logs to hive-log4j.default conf/ /tmp/<userid>

 and uses the level./hive.log WARN

It is often desirable to emit the logs to the standard output and/or change the logging level for debugging purposes. These can be done from the command
line as follows:

 $HIVE_HOME/bin/hive --hiveconf hive.root.logger=INFO,console

hive.root.logger specifies the logging level as well as the log destination. Specifying as the target sends the logs to the standard error console
(instead of the log file).

See for more information.Hive Logging in Getting Started

Tool to Clear Dangling Scratch Directories

See in Setting Up HiveServer2 for information about scratch directories and a command-line Scratch Directory Management tool for removing dangling
 that can be used in the Hive CLI as well as HiveServer2.scratch directories

Hive Batch Mode Commands

When is run with the or option, it executes SQL commands in batch mode.$HIVE_HOME/bin/hive -e -f

hive -e '<query-string>' executes the query string.
hive -f <filepath> executes one or more SQL queries from a file.

Version 0.14

As of Hive 0.14, <filepath> can be from one of the Hadoop supported filesystems (HDFS, S3, etc.) as well.

$HIVE_HOME/bin/hive -f hdfs://<namenode>:<port>/hive-script.sql
$HIVE_HOME/bin/hive -f s3://mys3bucket/s3-script.sql

See for more details.HIVE-7136

https://issues.apache.org/jira/browse/HIVE-7136
https://cwiki-test.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-HiveLogging
https://cwiki-test.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-ScratchDirectoryManagement
https://cwiki-test.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-ClearDanglingScratchDirTool
https://cwiki-test.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-ClearDanglingScratchDirTool
https://issues.apache.org/jira/browse/HIVE-7136

Hive Interactive Shell Commands

When is run without either the or option, it enters interactive shell mode.$HIVE_HOME/bin/hive -e -f

Use ";" (semicolon) to terminate commands. Comments in scripts can be specified using the "--" prefix.

Command Description

quit
exit

Use quit or exit to leave the interactive shell.

reset Resets the configuration to the default values (as of Hive 0.10: see).HIVE-3202

set <key>=<value> Sets the value of a particular configuration variable (key).
 If you misspell the variable name, the CLI will not show an error.Note:

set Prints a list of configuration variables that are overridden by the user or Hive.

set -v Prints all Hadoop and Hive configuration variables.

add FILE[S]
<filepath>
<filepath>*
add JAR[S]
<filepath>
<filepath>*
add ARCHIVE[S]
<filepath> <filepath>*

Adds one or more files, jars, or archives to the list of resources in the distributed cache. See below for more Hive Resources
information.

add FILE[S] <ivyurl>
<ivyurl>*
add JAR[S] <ivyurl>
<ivyurl>*
add ARCHIVE[S] <iv
yurl> <ivyurl>*

As of , adds one or more files, jars or archives to the list of resources in the distributed cache using an URL of the Hive 1.2.0 Ivy
form ivy://group:module:version?query_string. See Hive Resources below for more information.

list FILE[S]
list JAR[S]
list ARCHIVE[S]

Lists the resources already added to the distributed cache. See below for more information.Hive Resources

list FILE[S]
<filepath>*
list JAR[S]
<filepath>*
list ARCHIVE[S]
<filepath>*

Checks whether the given resources are already added to the distributed cache or not. See below for more Hive Resources
information.

delete FILE[S]
<filepath>*
delete JAR[S]
<filepath>*
delete ARCHIVE[S]
<filepath>*

Removes the resource(s) from the distributed cache.

delete FILE[S]
<ivyurl> <ivyurl>*
delete JAR[S]
<ivyurl> <ivyurl>*
delete ARCHIVE[S]
<ivyurl> <ivyurl>*

As of , removes the resource(s) which were added using the <ivyurl> from the distributed cache. Hive 1.2.0 See Hive Resources
below for more information.

! <command> Executes a shell command from the Hive shell.

dfs <dfs command> Executes a dfs command from the Hive shell.

<query string> Executes a Hive query and prints results to standard output.

source <filepath> Executes a script file inside the CLI.

Sample Usage:

https://issues.apache.org/jira/browse/HIVE-3202
https://issues.apache.org/jira/browse/HIVE-9664
http://ant.apache.org/ivy/
https://issues.apache.org/jira/browse/HIVE-9664

 hive> set mapred.reduce.tasks=32;
 hive> set;
 hive> select a.* from tab1;
 hive> !ls;
 hive> dfs -ls;

Hive Resources

Hive can manage the addition of resources to a session where those resources need to be made available at query execution time. The resources can be
files, jars, or archives. Any locally accessible file can be added to the session.

Once a resource is added to a session, Hive queries can refer to it by its name (in map/reduce/transform clauses) and the resource is available locally at
execution time on the entire Hadoop cluster. Hive uses Hadoop's Distributed Cache to distribute the added resources to all the machines in the cluster at
query execution time.

Usage:

 ADD { FILE[S] | JAR[S] | ARCHIVE[S] } <filepath1> [<filepath2>]*
 LIST { FILE[S] | JAR[S] | ARCHIVE[S] } [<filepath1> <filepath2> ..]
 DELETE { FILE[S] | JAR[S] | ARCHIVE[S] } [<filepath1> <filepath2> ..]

FILE resources are just added to the distributed cache. Typically, this might be something like a transform script to be executed.
JAR resources are also added to the Java classpath. This is required in order to reference objects they contain such as UDFs. See Hive Plugins
for more information about custom UDFs.
ARCHIVE resources are automatically unarchived as part of distributing them.

Example:

 hive> add FILE /tmp/tt.py;
 hive> list FILES;
 /tmp/tt.py
 hive> select from networks a
 MAP a.networkid
 USING 'python tt.py' as nn where a.ds = '2009-01-04' limit 10;

https://cwiki-test.apache.org/confluence/display/Hive/HivePlugins

It is not neccessary to add files to the session if the files used in a transform script are already available on all machines in the Hadoop cluster using the
same path name. For example:

... MAP a.networkid USING 'wc -l' ...
Here is an executable available on all machines.wc
... MAP a.networkid USING '/home/nfsserv1/hadoopscripts/tt.py' ...
Here may be accessible via an NFS mount point that's configured identically on all the cluster nodes.tt.py

Note that Hive configuration parameters can also specify jars, files, and archives. See for more information.Configuration Variables

HCatalog CLI

1.
2.

3.
4.

Version 1.2.0

As of , resources can be added and deleted using URLs of the form ivy://group:module:version?query_string.Hive 1.2.0 Ivy

group – Which module group the module comes from. Translates directly to a Maven groupId or an Ivy Organization.
module – The name of the module to load. Translates directly to a Maven artifactId or an Ivy artifact.
version – The version of the module to use. Any version or * (for latest) or an Ivy Range can be used.

Various parameters can be passed in the to configure how and which jars are added to the artifactory. The parameters are in the query_string
form of key value pairs separated by '&'.

Usage:

ADD { FILE[S] | JAR[S] | ARCHIVE[S] } <ivy://org:module:version?key=value&key=value&...> <ivy://org:
module:version?key=value&key1=value1&...>*
DELETE { FILE[S] | JAR[S] | ARCHIVE[S] } <ivy://org:module:version> <ivy://org:module:version>*

Also, we can mix <ivyurl> and <filepath> in the same ADD and DELETE commands.

ADD { FILE[S] | JAR[S] | ARCHIVE[S] } { <ivyurl> | <filepath> } <ivyurl>* <filepath>*
DELETE { FILE[S] | JAR[S] | ARCHIVE[S] } { <ivyurl> | <filepath> } <ivyurl>* <filepath>*

The different parameters that can be passed are:

exclude: Takes a comma separated value of the form org:module.
: Takes values true or false. Defaults to true. transitive When transitive = true, all the transitive dependencies are downloaded and

added to the classpath.
ext: The extension of the file to add. 'jar' by default.

: The maven classifier to resolve by.classifier

Examples:

hive>ADD JAR ivy://org.apache.pig:pig:0.10.0?exclude=org.apache.hadoop:avro;
hive>ADD JAR ivy://org.apache.pig:pig:0.10.0?exclude=org.apache.hadoop:avro&transitive=false;

The DELETE command will delete the resource and all its transitive dependencies unless some dependencies are shared by other resources. If
two resources share a set of transitive dependencies and one of the resources is deleted using the DELETE syntax, then all the transitive
dependencies will be deleted for the resource except the ones which are shared.

Examples:

hive>ADD JAR ivy://org.apache.pig:pig:0.10.0
hive>ADD JAR ivy://org.apache.pig:pig:0.11.1.15
hive>DELETE JAR ivy://org.apache.pig:pig:0.10.0

If A is the set containing the transitive dependencies of pig-0.10.0 and B is the set containing the transitive dependencies of pig-0.11.1.15, then
after executing the above commands, A-(A intersection B) will be deleted.

See HIVE-9664 for more details.

https://cwiki-test.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-ConfigurationVariables
https://issues.apache.org/jira/browse/HIVE-9664
http://ant.apache.org/ivy/
https://issues.apache.org/jira/browse/HIVE-9664?focusedCommentId=14338279&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-14338279

Many (but not all) commands can be issued as commands, and vice versa. See the HCatalog document in the hcat hive Command Line Interface HCatal
 for more information.og manual

Version

HCatalog is installed with Hive, starting with Hive release 0.11.0.

https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+CLI
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog

	LanguageManual Cli

