
LanguageManual DML
Hive Data Manipulation Language

Hive Data Manipulation Language
Loading files into tables

Syntax
Synopsis
Notes

Inserting data into Hive Tables from queries
Syntax
Synopsis
Notes
Dynamic Partition Inserts

Example
Additional Documentation

Writing data into the filesystem from queries
Syntax
Synopsis
Notes

Inserting values into tables from SQL
Syntax
Synopsis
Examples

Update
Syntax
Synopsis
Notes

Delete
Syntax
Synopsis
Notes

Merge
Syntax
Synopsis
Performance Note
Notes
Examples

There are multiple ways to modify data in Hive:

LOAD
INSERT

into Hive tables from queries
into directories from queries
into Hive tables from SQL

UPDATE
DELETE
MERGE

EXPORT and IMPORT commands are also available (as of).Hive 0.8

Loading files into tables

Hive does not do any transformation while loading data into tables. Load operations are currently pure copy/move operations that move datafiles into
locations corresponding to Hive tables.

Syntax

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2
...)]

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2
...)] [INPUTFORMAT 'inputformat' SERDE 'serde'] (3.0 or later)

Synopsis

Load operations prior to Hive 3.0 are pure copy/move operations that move datafiles into locations corresponding to Hive tables.

filepath can be:
a relative path, such as project/data1
an absolute path, such as /user/hive/project/data1

https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-Loadingfilesintotables
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-InsertingdataintoHiveTablesfromqueries
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-Writingdataintothefilesystemfromqueries
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-InsertingintotablesfromSQL
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-Update
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-Delete
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-Merge
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+ImportExport
https://issues.apache.org/jira/browse/HIVE-1918

a full URI with scheme and (optionally) an authority, such as hdfs://namenode:9000/user/hive/project/data1
The target being loaded to can be a table or a partition. If the table is partitioned, then one must specify a specific partition of the table by
specifying values for all of the partitioning columns.
filepath can refer to a file (in which case Hive will move the file into the table) or it can be a directory (in which case Hive will move all the files
within that directory into the table). In either case, addresses a set of files.filepath
If the keyword LOCAL is specified, then:

the load command will look for in the local file system. If a relative path is specified, it will be interpreted relative to the user's filepath
current working directory. The user can specify a full URI for local files as well - for example: file:///user/hive/project/data1
the load command will try to copy all the files addressed by to the target filesystem. The target file system is inferred by looking filepath
at the location attribute of the table. The copied data files will then be moved to the table.
Note: If you run this command against a HiveServer2 instance then the local path refers to a path on the HiveServer2 instance.
HiveServer2 must have the proper permissions to access that file.

If the keyword LOCAL is specified, then Hive will either use the full URI of , if one is specified, or will apply the following rules:not filepath
If scheme or authority are not specified, Hive will use the scheme and authority from the hadoop configuration variable fs.default.

 that specifies the Namenode URI.name
If the path is not absolute, then Hive will interpret it relative to /user/<username>
Hive will the files addressed by into the table (or partition)move filepath

If the OVERWRITE keyword is used then the contents of the target table (or partition) will be deleted and replaced by the files referred to by filepath
; otherwise the files referred by will be added to the table.filepath

Additional load operations are supported by Hive 3.0 onwards as Hive internally rewrites the load into an INSERT AS SELECT.

If table has partitions, however, the load command does not have them, the load would be converted into INSERT AS SELECT and assume that
the last set of columns are partition columns. It will throw an error if the file does not conform to the expected schema.
If table is bucketed then the following rules apply:

In strict mode : launches an INSERT AS SELECT job.
In non-strict mode : if the file names conform to the naming convention (if the file belongs to bucket 0, it should be named 000000_0 or
000000_0_copy_1, or if it belongs to bucket 2 the names should be like 000002_0 or 000002_0_copy_3, etc.) then it will be a pure copy
/move operation, else it will launch an INSERT AS SELECT job.

filepath can contain subdirectories, provided each file conforms to the schema.
inputformat can be any Hive input format such as text, ORC, etc.
serde can be the associated Hive SERDE.
Both and are case sensitive.inputformat serde

Example of such a schema:

CREATE TABLE tab1 (col1 int, col2 int) PARTITIONED BY (col3 int) STORED AS ORC;
LOAD DATA LOCAL INPATH 'filepath' INTO TABLE tab1;

Here, partition information is missing which would otherwise give an error, however, if the file(s) located at conform to the table schema such that filepath
each row ends with partition column(s) then the load will rewrite into an INSERT AS SELECT job.

The uncompressed data should look like this:

(1,2,3), (2,3,4), (4,5,3) etc.

Notes

filepath cannot contain subdirectories (except for Hive 3.0 or later, as described above).
If the keyword LOCAL is not given, must refer to files within the same filesystem as the table's (or partition's) location.filepath
Hive does some minimal checks to make sure that the files being loaded match the target table. Currently it checks that if the table is stored in
sequencefile format, the files being loaded are also sequencefiles, and vice versa.
A bug that prevented loading a file when its name includes the "+" character is fixed in release 0.13.0 ().HIVE-6048
Please read if your datafile is compressed.CompressedStorage

Inserting data into Hive Tables from queries

Query Results can be inserted into tables by using the insert clause.

Syntax

file:///user/hive/project/data1
https://issues.apache.org/jira/browse/HIVE-6048
https://cwiki-test.apache.org/confluence/display/Hive/CompressedStorage

Standard syntax:
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]]
select_statement1 FROM from_statement;
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM
from_statement;

Hive extension (multiple inserts):
FROM from_statement
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]]
select_statement1
[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2]
[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;
FROM from_statement
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1
[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2]
[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2] ...;

Hive extension (dynamic partition inserts):
INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM
from_statement;
INSERT INTO TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM
from_statement;

Synopsis

INSERT OVERWRITE will overwrite any existing data in the table or partition
unless is provided for a partition (as of Hive).IF NOT EXISTS 0.9.0
As of Hive 2.3.0 (), if the table has ("auto.purge"="true") the previous data of the table is not moved to HIVE-15880 TBLPROPERTIES
Trash when INSERT OVERWRITE query is run against the table. This functionality is applicable only for managed tables (see managed

) and is turned off when "auto.purge" property is unset or set to false.tables
INSERT INTO will append to the table or partition, keeping the existing data intact. (Note: INSERT INTO syntax is only available starting in
version 0.8.)

As of Hive , a table can be made by creating it with . The default is "immutable"0.13.0 immutable TBLPROPERTIES ("immutable"="true")
="false".
INSERT INTO behavior into an immutable table is disallowed if any data is already present, although INSERT INTO still works if the
immutable table is empty. The behavior of INSERT OVERWRITE is not affected by the "immutable" table property.
An immutable table is protected against accidental updates due to a script loading data into it being run multiple times by mistake. The
first insert into an immutable table succeeds and successive inserts fail, resulting in only one set of data in the table, instead of silently
succeeding with multiple copies of the data in the table.

Inserts can be done to a table or a partition. If the table is partitioned, then one must specify a specific partition of the table by specifying values
for all of the partitioning columns. If is set to true, these values are validated, converted and normalized to conform to hive.typecheck.on.insert
their column types (Hive onward). 0.12.0
Multiple insert clauses (also known as) can be specified in the same query.Multi Table Insert
The output of each of the select statements is written to the chosen table (or partition). Currently the OVERWRITE keyword is mandatory and
implies that the contents of the chosen table or partition are replaced with the output of corresponding select statement.
The output format and serialization class is determined by the table's metadata (as specified via DDL commands on the table).
As of , if a table has an OutputFormat that implements AcidOutputFormat and the system is configured to use a manager Hive 0.14 transaction
that implements ACID, then INSERT OVERWRITE will be disabled for that table. This is to avoid users unintentionally overwriting transaction
history. The same functionality can be achieved by using (for non-partitioned tables) or followed by TRUNCATE TABLE DROP PARTITION
INSERT INTO.
As of Hive the TABLE keyword is optional.1.1.0
As of Hive each INSERT INTO T can take a column list like INSERT INTO T (z, x, c1). See Description of for examples.1.2.0 HIVE-9481
As of Hive INSERT OVERWRITE from a source with UNION ALL on full CRUD ACID tables is not allowed.3.1.0

Notes

Multi Table Inserts minimize the number of data scans required. Hive can insert data into multiple tables by scanning the input data just once (and
applying different query operators) to the input data.
Starting with , the select statement can include one or more common table expressions (CTEs) as shown in the . For Hive 0.13.0 SELECT syntax
an example, see .Common Table Expression

Dynamic Partition Inserts

Version information

This information reflects the situation in Hive 0.12; dynamic partition inserts were added in Hive 0.6.

https://issues.apache.org/jira/browse/HIVE-2612
https://issues.apache.org/jira/browse/HIVE-15880
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-listTableProperties
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-ManagedandExternalTables
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-ManagedandExternalTables
https://issues.apache.org/jira/browse/HIVE-6406
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.typecheck.on.insert
https://issues.apache.org/jira/browse/HIVE-5297
https://issues.apache.org/jira/browse/HIVE-5317
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-TruncateTable
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-DropPartitions
https://issues.apache.org/jira/browse/HIVE-9353
https://issues.apache.org/jira/browse/HIVE-9481
https://issues.apache.org/jira/browse/HIVE-9481
https://issues.apache.org/jira/browse/HIVE-19908
https://issues.apache.org/jira/browse/HIVE-1180
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select#LanguageManualSelect-SelectSyntax
https://cwiki.apache.org/confluence/display/Hive/Common+Table+Expression#CommonTableExpression-CTEinViews,CTAS,andInsertStatements

In the dynamic partition inserts, users can give partial partition specifications, which means just specifying the list of partition column names in the
PARTITION clause. The column values are optional. If a partition column value is given, we call this a static partition, otherwise it is a dynamic partition.
Each dynamic partition column has a corresponding input column from the select statement. This means that the dynamic partition creation is determined
by the value of the input column. The dynamic partition columns must be among the columns in the SELECT statement and specified last in the same

 in which they appear in the PARTITION() clause. As of Hive 3.0.0 () there is no need to specify dynamic partition columns. Hive will order HIVE-19083
automatically generate partition specification if it is not specified.

Dynamic partition inserts are disabled by default prior to Hive 0.9.0 and enabled by default in Hive and later. These are the relevant configuration 0.9.0
properties for dynamic partition inserts:

Configuration property Default Note

hive.exec.dynamic.
partition

true Needs to be set to to enable dynamic partition insertstrue

hive.exec.dynamic.
partition.mode

strict In mode, the user must specify at least one static partition in case the user accidentally strict
overwrites all partitions, in mode all partitions are allowed to be dynamicnonstrict

hive.exec.max.dynamic.
partitions.pernode

100 Maximum number of dynamic partitions allowed to be created in each mapper/reducer node

hive.exec.max.dynamic.
partitions

1000 Maximum number of dynamic partitions allowed to be created in total

hive.exec.max.created.
files

100000 Maximum number of HDFS files created by all mappers/reducers in a MapReduce job

hive.error.on.empty.
partition

false Whether to throw an exception if dynamic partition insert generates empty results

Example

FROM page_view_stg pvs
INSERT OVERWRITE TABLE page_view PARTITION(dt='2008-06-08', country)
 SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url, null, null, pvs.ip, pvs.cnt

Here the partition will be dynamically created by the last column from the clause (i.e.). Note that the name is not used. In country SELECT pvs.cnt nons
 mode the partition could also be dynamically created.trict dt

Additional Documentation

Design Document
Original design doc
HIVE-936

Tutorial: Dynamic-Partition Insert
HCatalog Dynamic Partitioning

Usage with Pig
Usage from MapReduce

Writing data into the filesystem from queries

Query results can be inserted into filesystem directories by using a slight variation of the syntax above:

Syntax

Standard syntax:
INSERT OVERWRITE [LOCAL] DIRECTORY directory1
 [ROW FORMAT row_format] [STORED AS file_format] (Note: Only available starting with Hive 0.11.0)
 SELECT ... FROM ...

Hive extension (multiple inserts):
FROM from_statement
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] ...

row_format
 : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
 [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
 [NULL DEFINED AS char] (Note: Only available starting with Hive 0.13)

https://issues.apache.org/jira/browse/HIVE-19083
https://issues.apache.org/jira/browse/HIVE-2835
https://cwiki-test.apache.org/confluence/display/Hive/DynamicPartitions
https://issues.apache.org/jira/secure/attachment/12437909/dp_design.txt
https://issues.apache.org/jira/browse/HIVE-936
https://cwiki-test.apache.org/confluence/display/Hive/Tutorial#Tutorial-Dynamic-PartitionInsert
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+DynamicPartitions
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+DynamicPartitions#HCatalogDynamicPartitions-UsagewithPig
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+DynamicPartitions#HCatalogDynamicPartitions-UsagefromMapReduce

Synopsis

Directory can be a full URI. If scheme or authority are not specified, Hive will use the scheme and authority from the hadoop configuration variable
 that specifies the Namenode URI.fs.default.name

If LOCAL keyword is used, Hive will write data to the directory on the local file system.
Data written to the filesystem is serialized as text with columns separated by ^A and rows separated by newlines. If any of the columns are not of
primitive type, then those columns are serialized to JSON format.

Notes

INSERT OVERWRITE statements to directories, local directories, and tables (or partitions) can all be used together within the same query.
INSERT OVERWRITE statements to HDFS filesystem directories are the best way to extract large amounts of data from Hive. Hive can write to
HDFS directories in parallel from within a map-reduce job.
The directory is, as you would expect, OVERWRITten; in other words, if the specified path exists, it is clobbered and replaced with the output.
As of Hive the separator used can be specified; in earlier versions it was always the ^A character (\001). However, custom separators are 0.11.0
only supported for LOCAL writes in Hive versions 0.11.0 to 1.1.0 – this bug is fixed in version 1.2.0 (see).HIVE-5672
In , inserts into compliant tables will deactivate vectorization for the duration of the select and insert. This will be done Hive 0.14 ACID
automatically. ACID tables that have data inserted into them can still be queried using vectorization.

Inserting values into tables from SQL

The INSERT...VALUES statement can be used to insert data into tables directly from SQL.

Syntax

Standard Syntax:
INSERT INTO TABLE tablename [PARTITION (partcol1[=val1], partcol2[=val2] ...)] VALUES values_row [, values_row
...]

Where values_row is:
(value [, value ...])
where a value is either null or any valid SQL literal

Synopsis

Each row listed in the VALUES clause is inserted into table .tablename
Values must be provided for every column in the table. The standard SQL syntax that allows the user to insert values into only some columns is
not yet supported. To mimic the standard SQL, nulls can be provided for columns the user does not wish to assign a value to.
Dynamic partitioning is supported in the same way as for .INSERT...SELECT
If the table being inserted into supports and a transaction manager that supports ACID is in use, this operation will be auto-committed upon ACID
successful completion.
Hive does not support literals for complex types (array, map, struct, union), so it is not possible to use them in INSERT INTO...VALUES
clauses. This means that the user cannot insert data into a complex datatype column using the INSERT INTO...VALUES clause.

Examples

CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3, 2))
 CLUSTERED BY (age) INTO 2 BUCKETS STORED AS ORC;

INSERT INTO TABLE students
 VALUES ('fred flintstone', 35, 1.28), ('barney rubble', 32, 2.32);

CREATE TABLE pageviews (userid VARCHAR(64), link STRING, came_from STRING)
 PARTITIONED BY (datestamp STRING) CLUSTERED BY (userid) INTO 256 BUCKETS STORED AS ORC;

INSERT INTO TABLE pageviews PARTITION (datestamp = '2014-09-23')
 VALUES ('jsmith', 'mail.com', 'sports.com'), ('jdoe', 'mail.com', null);

INSERT INTO TABLE pageviews PARTITION (datestamp)
 VALUES ('tjohnson', 'sports.com', 'finance.com', '2014-09-23'), ('tlee', 'finance.com', null, '2014-09-21');

INSERT INTO TABLE pageviews
 VALUES ('tjohnson', 'sports.com', 'finance.com', '2014-09-23'), ('tlee', 'finance.com', null, '2014-09-21');

Version Information

INSERT...VALUES is available starting in .Hive 0.14

https://issues.apache.org/jira/browse/HIVE-3682
https://issues.apache.org/jira/browse/HIVE-5672
https://issues.apache.org/jira/browse/HIVE-5317
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=82903069#LanguageManualDML-DynamicPartitionInserts
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-5317

Update

Syntax

Standard Syntax:
UPDATE tablename SET column = value [, column = value ...] [WHERE expression]

Synopsis

The referenced column must be a column of the table being updated.
The value assigned must be an expression that Hive supports in the select clause. Thus arithmetic operators, UDFs, casts, literals, etc. are
supported. Subqueries are not supported.
Only rows that match the WHERE clause will be updated.
Partitioning columns cannot be updated.
Bucketing columns cannot be updated.
In Hive 0.14, upon successful completion of this operation the changes will be auto-committed.

Notes

Vectorization will be turned off for update operations. This is automatic and requires no action on the part of the user. Non-update operations are
not affected. Updated tables can still be queried using vectorization.
In version 0.14 it is recommended that you set =false when doing updates, as this produces more efficient hive.optimize.sort.dynamic.partition
execution plans.

Delete

Syntax

Standard Syntax:
DELETE FROM tablename [WHERE expression]

Synopsis

Only rows that match the WHERE clause will be deleted.
In Hive 0.14, upon successful completion of this operation the changes will be auto-committed.

Notes

Vectorization will be turned off for delete operations. This is automatic and requires no action on the part of the user. Non-delete operations are
not affected. Tables with deleted data can still be queried using vectorization.
In version 0.14 it is recommended that you set =false when doing deletes, as this produces more efficient hive.optimize.sort.dynamic.partition
execution plans.

Merge

Syntax

Version Information

UPDATE is available starting in .Hive 0.14

Updates can only be performed on tables that support ACID. See for details.Hive Transactions

Version Information

DELETE is available starting in .Hive 0.14

Deletes can only be performed on tables that support ACID. See for details.Hive Transactions

Version Information

MERGE is available starting in .Hive 2.2

Merge can only be performed on tables that support ACID. See for details.Hive Transactions

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.optimize.sort.dynamic.partition
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.optimize.sort.dynamic.partition
https://issues.apache.org/jira/browse/HIVE-5317
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-5317
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-10924
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions

Standard Syntax:
MERGE INTO <target table> AS T USING <source expression/table> AS S
ON <boolean expression1>
WHEN MATCHED [AND <boolean expression2>] THEN UPDATE SET <set clause list>
WHEN MATCHED [AND <boolean expression3>] THEN DELETE
WHEN NOT MATCHED [AND <boolean expression4>] THEN INSERT VALUES<value list>

Synopsis

Merge allows actions to be performed on a target table based on the results of a join with a source table.
In Hive 2.2, upon successful completion of this operation the changes will be auto-committed.

Performance Note

SQL Standard requires that an error is raised if the ON clause is such that more than 1 row in source matches a row in target. This check is
computationally expensive and may affect the overall runtime of a MERGE statement significantly. =false may be used to hive.merge.cardinality.check
disable the check at your own risk. If the check is disabled, but the statement has such a cross join effect, it may lead to data corruption.

Notes

1, 2, or 3 WHEN clauses may be present; at most 1 of each type: UPDATE/DELETE/INSERT.
WHEN NOT MATCHED must be the last WHEN clause.
If both UPDATE and DELETE clauses are present, the first one in the statement must include [AND <boolean expression>].
Vectorization will be turned off for merge operations. This is automatic and requires no action on the part of the user. Non-delete operations are
not affected. Tables with deleted data can still be queried using vectorization.

Examples

See .here

https://en.wikipedia.org/wiki/Merge_(SQL)
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.merge.cardinality.check
https://community.hortonworks.com/articles/97113/hive-acid-merge-by-example.html

	LanguageManual DML

