
StatsDev
Statistics in Hive

Statistics in Hive
Motivation
Scope

Table and Partition Statistics
Column Statistics
Top K Statistics

Quick overview
Implementation
Usage

Configuration Variables
Newly Created Tables
Existing Tables – ANALYZE

Examples
ANALYZE TABLE <table1> CACHE METADATA

Current Status (JIRA)

This document describes the support of statistics for Hive tables (see).HIVE-33

Motivation

Statistics such as the number of rows of a table or partition and the histograms of a particular interesting column are important in many ways. One of the
key use cases of statistics is query optimization. Statistics serve as the input to the cost functions of the optimizer so that it can compare different plans
and choose among them. Statistics may sometimes meet the purpose of the users' queries. Users can quickly get the answers for some of their queries by
only querying stored statistics rather than firing long-running execution plans. Some examples are getting the quantile of the users' age distribution, the top
10 apps that are used by people, and the number of distinct sessions.

Scope

Table and Partition Statistics

The first milestone in supporting statistics was to support table and partition level statistics. Table and partition statistics are now stored in the Hive
Metastore for either newly created or existing tables. The following statistics are currently supported for partitions:

Number of rows
Number of files
Size in Bytes

For tables, the same statistics are supported with the addition of the number of partitions of the table.

Column Statistics

The second milestone was to support column level statistics. See in the Design Documents.Column Statistics in Hive

Supported column stats are:

BooleanCol
umnStatsDa

ta

DoubleColu
mnStatsData

LongColum
nStatsData

StringColum
nStatsData

BinaryColum
nStatsData

DecimalColu
mnStatsData

Date DateColumn
StatsData

Timestamp TimestampCol
umnStatsData

union
ColumnStatisticsData

1: required
i64
numTrues,

1: optional
double
lowValue,

1: optional
i64 lowValue,

1: required
i64
maxColLen,

1: required
i64
maxColLen,

1: optional
Decimal
lowValue,

1: required i64
daysSinceEpo
ch

1: optional
Date
lowValue,

1: required i64
secondsSinceEp
och

1: optional
Timestamp
lowValue,

1:
BooleanColumnStatsD
ata booleanStats,

2: required
i64
numFalses,

2: optional
double
highValue,

2: optional
i64
highValue,

2: required
double
avgColLen,

2: required
double
avgColLen,

2: optional
Decimal
highValue,

2: optional
Date
highValue,

2: optional
Timestamp
highValue,

2:
LongColumnStatsData
longStats,

3: required
i64
numNulls,

3: required
i64 numNulls,

3: required
i64 numNulls,

3: required
i64 numNulls,

3: required
i64 numNulls,

3: required
i64 numNulls,

3: required
i64 numNulls,

3: required i64
numNulls,

3:
DoubleColumnStatsDa
ta doubleStats,

4: optional
binary
bitVectors

4: required
i64 numDVs,

4: required
i64 numDVs,

4: required
i64 numDVs,

4: optional
binary
bitVectors

4: required
i64 numDVs,

4: required
i64 numDVs,

4: required i64
numDVs,

4:
StringColumnStatsDat
a stringStats,

Version: Table and partition statistics

Table and partition level statistics were added in Hive 0.7.0 by .HIVE-1361

http://issues.apache.org/jira/browse/HIVE-33
https://cwiki-test.apache.org/confluence/display/Hive/Column+Statistics+in+Hive
https://issues.apache.org/jira/browse/HIVE-1361

5: optional
binary
bitVectors,

5: optional
binary
bitVectors,

5: optional
binary
bitVectors

5: optional
binary
bitVectors,

5: optional
binary
bitVectors,

5: optional
binary
bitVectors,

5:
BinaryColumnStatsDat
a binaryStats,

6: optional
binary
histogram

6: optional
binary
histogram

6: optional
binary
histogram

6: optional
binary
histogram

6: optional
binary
histogram

6:
DecimalColumnStatsD
ata decimalStats,

7:
DateColumnStatsData
dateStats,

8:
TimestampColumnStat
sData timestampStats

Top K Statistics

Column level top K statistics are still pending; see .HIVE-3421

Quick overview

Description Stored in Collected by Since

Number of partition the dataset consists of Fictional metastore property: nu
mPartitions

computed during displaying the properties of a partitioned table Hive 2.3

Number of files the dataset consists of Metastore table property: numFi
les

Automatically during Metastore operations

Total size of the dataset as its seen at the
filesystem level

Metastore table property: totalSi
ze

Uncompressed size of the dataset Metastore table property: rawDa
taSize

Computed, these are the basic statistics. Calculated automatically when hive.
 is enabled.stats.autogather

Can be collected manually by: ANALYZE TABLE ... COMPUTE STATISTICS

Hive 0.8

Number of rows the dataset consist of Metastore table property: numR
ows

Column level statistics Metastore; TAB_COL_STATS
table

Computed, Calculated automatically when hive.stats.column.autogather is
enabled.
Can be collected manually by: ANALYZE TABLE ... COMPUTE STATISTICS
FOR COLUMNS

Implementation

The way the statistics are calculated is similar for both newly created and existing tables.

For newly created tables, the job that creates a new table is a MapReduce job. During the creation, every mapper while copying the rows from the source
table in the FileSink operator, gathers statistics for the rows it encounters and publishes them into a Database (possibly). At the end of the MySQL
MapReduce job, published statistics are aggregated and stored in the MetaStore.

A similar process happens in the case of already existing tables, where a Map-only job is created and every mapper while processing the table in the
TableScan operator, gathers statistics for the rows it encounters and the same process continues.

It is clear that there is a need for a database that stores temporary gathered statistics. Currently there are two implementations, one is using and MySQL
the other is using . There are two pluggable interfaces IStatsPublisher and IStatsAggregator that the developer can implement to support any other HBase
storage. The interfaces are listed below:

Version: Column statistics

Column level statistics were added in Hive 0.10.0 by .HIVE-1362

https://cwiki-test.apache.org/confluence/display/Hive/Top+K+Stats
https://issues.apache.org/jira/browse/HIVE-3421
https://issues.apache.org/jira/browse/HIVE-16315
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.autogather
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.autogather
https://issues.apache.org/jira/browse/HIVE-2185
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.column.autogather
http://www.mysql.com/
http://www.mysql.com/
http://wiki.apache.org/hadoop/Hbase
https://issues.apache.org/jira/browse/HIVE-1362

package org.apache.hadoop.hive.ql.stats;

import org.apache.hadoop.conf.Configuration;

/**
 * An interface for any possible implementation for publishing statics.
 */

public interface IStatsPublisher {

 /**
 * This method does the necessary initializations according to the implementation requirements.
 */
 public boolean init(Configuration hconf);

 /**
 * This method publishes a given statistic into a disk storage, possibly HBase or MySQL.
 *
 * rowID : a string identification the statistics to be published then gathered, possibly the table name + the
partition specs.
 *
 * key : a string noting the key to be published. Ex: "numRows".
 *
 * value : an integer noting the value of the published key.
 * */
 public boolean publishStat(String rowID, String key, String value);

 /**
 * This method executes the necessary termination procedures, possibly closing all database connections.
 */
 public boolean terminate();

}

package org.apache.hadoop.hive.ql.stats;

import org.apache.hadoop.conf.Configuration;

/**
 * An interface for any possible implementation for gathering statistics.
 */

public interface IStatsAggregator {

 /**
 * This method does the necessary initializations according to the implementation requirements.
 */
 public boolean init(Configuration hconf);

 /**
 * This method aggregates a given statistic from a disk storage.
 * After aggregation, this method does cleaning by removing all records from the disk storage that have the
same given rowID.
 *
 * rowID : a string identification the statistic to be gathered, possibly the table name + the partition specs.
 *
 * key : a string noting the key to be gathered. Ex: "numRows".
 *
 * */
 public String aggregateStats(String rowID, String key);

 /**
 * This method executes the necessary termination procedures, possibly closing all database connections.
 */
 public boolean terminate();

}

Usage

Configuration Variables

See in for a list of the variables that configure Hive table statistics. describes how to use the variables.Statistics Configuration Properties Configuring Hive

Newly Created Tables

For newly created tables and/or partitions (that are populated through the command), statistics are automatically computed by INSERT OVERWRITE
default. The user has to explicitly set the boolean variable to so that statistics are not automatically computed and stored into hive.stats.autogather false
Hive MetaStore.

set hive.stats.autogather=false;

The user can also specify the implementation to be used for the storage of temporary statistics setting the variable . For example, to set hive.stats.dbclass
HBase as the implementation of temporary statistics storage (the default is or , depending on the Hive version) the user should issue the jdbc:derby fs
following command:

set hive.stats.dbclass=hbase;

In case of JDBC implementations of temporary stored statistics (ex. Derby or MySQL), the user should specify the appropriate connection string to the
database by setting the variable . Also the user should specify the appropriate JDBC driver by setting the variable hive.stats.dbconnectionstring hive.

.stats.jdbcdriver

set hive.stats.dbclass=jdbc:derby;
set hive.stats.dbconnectionstring="jdbc:derby:;databaseName=TempStatsStore;create=true";
set hive.stats.jdbcdriver="org.apache.derby.jdbc.EmbeddedDriver";

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-Statistics
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki-test.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-ConfiguringHive
http://wiki.apache.org/hadoop/Hive/LanguageManual/DML#Inserting_data_into_Hive_Tables_from_queries
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.autogather
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.dbclass
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.dbconnectionstring
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.jdbcdriver
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.jdbcdriver

Queries can fail to collect stats completely accurately. There is a setting that fails queries if the stats can't be reliably collected. This is hive.stats.reliable f
 by default.alse

Existing Tables – ANALYZE

For existing tables and/or partitions, the user can issue the ANALYZE command to gather statistics and write them into Hive MetaStore. The syntax for
that command is described below:

ANALYZE TABLE [db_name.]tablename [PARTITION(partcol1[=val1], partcol2[=val2], ...)] -- (Note: Fully support
qualified table name since Hive 1.2.0, see HIVE-10007.)
 COMPUTE STATISTICS
 [FOR COLUMNS] -- (Note: Hive 0.10.0 and later.)
 [CACHE METADATA] -- (Note: Hive 2.1.0 and later.)
 [NOSCAN];

When the user issues that command, he may or may not specify the partition specs. If the user doesn't specify any partition specs, statistics are gathered
for the table as well as all the partitions (if any). If certain partition specs are specified, then statistics are gathered for only those partitions. When
computing statistics across all partitions, the partition columns still need to be listed. As of , Hive fully supports qualified table name in this Hive 1.2.0
command. User can only compute the statistics for a table under current database if a non-qualified table name is used.

When the optional parameter NOSCAN is specified, the command won't scan files so that it's supposed to be fast. Instead of all statistics, it just gathers
the following statistics:

Number of files
Physical size in bytes

Examples

Suppose table Table1 has 4 partitions with the following specs:

Partition1: (ds='2008-04-08', hr=11)
Partition2: (ds='2008-04-08', hr=12)
Partition3: (ds='2008-04-09', hr=11)
Partition4: (ds='2008-04-09', hr=12)

and you issue the following command:

ANALYZE TABLE Table1 PARTITION(ds='2008-04-09', hr=11) COMPUTE STATISTICS;

then statistics are gathered for partition3 (ds='2008-04-09', hr=11) only.

If you issue the command:

ANALYZE TABLE Table1 PARTITION(ds='2008-04-09', hr=11) COMPUTE STATISTICS FOR COLUMNS;

then column statistics are gathered for all columns for partition3 (ds='2008-04-09', hr=11). This is available in Hive 0.10.0 and later.

If you issue the command:

ANALYZE TABLE Table1 PARTITION(ds='2008-04-09', hr) COMPUTE STATISTICS;

then statistics are gathered for partitions 3 and 4 only (hr=11 and hr=12).

If you issue the command:

ANALYZE TABLE Table1 PARTITION(ds='2008-04-09', hr) COMPUTE STATISTICS FOR COLUMNS;

Version 0.10.0: FOR COLUMNS

As of , the optional parameter FOR COLUMNS computes column statistics for all columns in the specified table (and for all partitions Hive 0.10.0
if the table is partitioned). See for details.Column Statistics in Hive

To display these statistics, use DESCRIBE FORMATTED [.] [PARTITION ()].db_name table_name column_name partition_spec

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.stats.reliable
https://issues.apache.org/jira/browse/HIVE-10007
https://issues.apache.org/jira/browse/HIVE-1362
https://cwiki-test.apache.org/confluence/display/Hive/Column+Statistics+in+Hive

then column statistics for all columns are gathered for partitions 3 and 4 only (Hive 0.10.0 and later).

If you issue the command:

ANALYZE TABLE Table1 PARTITION(ds, hr) COMPUTE STATISTICS;

then statistics are gathered for all four partitions.

If you issue the command:

ANALYZE TABLE Table1 PARTITION(ds, hr) COMPUTE STATISTICS FOR COLUMNS;

then column statistics for all columns are gathered for all four partitions (Hive 0.10.0 and later).

For a non-partitioned table, you can issue the command:

ANALYZE TABLE Table1 COMPUTE STATISTICS;

to gather statistics of the table.

For a non-partitioned table, you can issue the command:

ANALYZE TABLE Table1 COMPUTE STATISTICS FOR COLUMNS;

to gather column statistics of the table (Hive 0.10.0 and later).

If Table1 is a partitioned table, then for basic statistics you have to specify partition specifications like above in the analyze statement. Otherwise a
semantic analyzer exception will be thrown.

However for column statistics, if no partition specification is given in the analyze statement, statistics for all partitions are computed.

You can view the stored statistics by issuing the command. Statistics are stored in the Parameters array. Suppose you issue the analyze DESCRIBE
command for the whole table Table1, then issue the command:

DESCRIBE EXTENDED TABLE1;

then among the output, the following would be displayed:

 ... , parameters:{numPartitions=4, numFiles=16, numRows=2000, totalSize=16384, ...},

If you issue the command:

DESCRIBE EXTENDED TABLE1 PARTITION(ds='2008-04-09', hr=11);

then among the output, the following would be displayed:

 ... , parameters:{numFiles=4, numRows=500, totalSize=4096, ...},

If you issue the command:

desc formatted concurrent_delete_different partition(ds='tomorrow') name;

the output would look like this:

http://wiki.apache.org/hadoop/Hive/LanguageManual/DDL?highlight=(describe)#Describe_Partition

+-----------------+--------------------+-------+-------+------------+-----------------+--------------
+--------------+------------+-------------+------------+----------+
| col_name | data_type | min | max | num_nulls | distinct_count | avg_col_len |
max_col_len | num_trues | num_falses | bitvector | comment |
+-----------------+--------------------+-------+-------+------------+-----------------+--------------
+--------------+------------+-------------+------------+----------+
| col_name | name | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| data_type | varchar(50) | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| min | | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| max | | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| num_nulls | 0 | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| distinct_count | 2 | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| avg_col_len | 5.0 | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| max_col_len | 5 | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| num_trues | | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| num_falses | | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| bitVector | | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
| comment | from deserializer | NULL | NULL | NULL | NULL | NULL |
NULL | NULL | NULL | NULL | NULL |
+-----------------+--------------------+-------+-------+------------+-----------------+--------------
+--------------+------------+-------------+------------+----------+

If you issue the command:

ANALYZE TABLE Table1 PARTITION(ds='2008-04-09', hr) COMPUTE STATISTICS NOSCAN;

then statistics, number of files and physical size in bytes are gathered for partitions 3 and 4 only.

ANALYZE TABLE <table1> CACHE METADATA

When Hive metastore is configured to use HBase, this command explicitly caches file metadata in HBase metastore.

The goal of this feature is to cache file metadata (e.g. ORC file footers) to avoid reading lots of files from HDFS at split generation time, as well as
potentially cache some information about splits (e.g. grouping based on location that would be good for some short time) to further speed up the
generation and achieve better cache locality with consistent splits.

ANALYZE TABLE Table1 CACHE METADATA;

See feature details in and ()HBase Metastore Split Cache HIVE-12075

Current Status (JIRA)

type key summary assignee reporter priority status resolution created updated due

Feature not implemented

Hive Metastore on HBase was discontinued and removed in Hive 3.0.0. See HBaseMetastoreDevelopmentGuide

https://issues.apache.org/jira/secure/attachment/12749746/HBase%20metastore%20split%20cache.pdf
https://issues.apache.org/jira/browse/HIVE-12075
https://cwiki-test.apache.org/confluence/display/Hive/HBaseMetastoreDevelopmentGuide

 Can't show details. Ask your admin to add this Jira URL to the allowlist.

View these issues in Jira

https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%20=%20HIVE%20AND%20component%20in%20%28%22Statistics%22%29&tempMax=1000&src=confmacro

	StatsDev

