
Operations

LinkedIn
Hardware
OS Settings
Java
Kafka
Monitoring

Server Stats
Producer stats
Consumer stats
Audit

Zookeeper
Stable version
Operationalizing Zookeeper

Here is some information on actually running Kafka as a production system. This is meant as a page for people to record their operational and monitoring
practices to help people gather knowledge about successfully running Kafka in production. Feel free to add a section for your configuration if you have
anything you want to share. There is nothing magically about most of these configurations, you may be able to improve on them, but they may serve as a
helpful starting place.

LinkedIn

Hardware

We are using dual quad-core Intel Xeon machines with 24GB of memory. In general this should not matter too much, we only see pretty low CPU usage at
peak even with GZIP compression enabled and a number of clients that don't batch requests. The memory is probably more than is needed for caching the
active segments of the log.

The disk throughput important. We have 8x7200 rpm SATA drives in a RAID 10 array. In general this is the performance bottleneck, and more disks is is
more better. Depending on how you configure flush behavior you may or may not benefit from more expensive disks (if you flush often then higher RPM
SAS drives may be better).

OS Settings

We use Linux. Ext4 is the filesystem and we run using software RAID 10. We haven't benchmarked filesystems so other filesystems may be superior.

We have added two tuning changes: (1) we upped the number of file descriptors since we have lots of topics and lots of connections, and (2) we upped the
max socket buffer size to enable high-performance data transfer between data centers (described).here

Java

$ java -version
java version "1.6.0_21"
Java(TM) SE Runtime Environment (build 1.6.0_21-b06)
Java HotSpot(TM) 64-Bit Server VM (build 17.0-b16, mixed mode)

Here are our command line options:

java -server -Xms3072m -Xmx3072m -XX:NewSize=256m -XX:MaxNewSize=256m -XX:+UseConcMarkSweepGC -XX:
CMSInitiatingOccupancyFraction=70
 -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintTenuringDistribution -Xloggc:logs/gc.log -Djava.awt.
headless=true
 -Dcom.sun.management.jmxremote -classpath <long list of jars>

In 0.8,the GC setting is changed slightly to:
-Xms3g -Xmx3g -XX:NewSize=256m -XX:MaxNewSize=256m -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:
CMSInitiatingOccupancyFraction=30
-XX:+UseCMSInitiatingOccupancyOnly -XX:+CMSConcurrentMTEnabled -XX:+CMSScavengeBeforeRemark -XX:+PrintGCDetails
-XX:+PrintGCDateStamps
-XX:+PrintTenuringDistribution -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintTenuringDistribution -
Xloggc:logs/gc.log

http://www.psc.edu/networking/projects/tcptune

Kafka

We are running Kafka 0.7 right now but may move to trunk as we fix bugs.

The most important configurations for performance are those that control the disk flush rate. The more often data is flushed to disk, the more "seek-server
bound" Kafka will be and the lower the throughput. However we don't hand out data until is is sync'd to disk, so delaying flush also adds some latency. The
flush behavior can be set by either giving a timeout (flush at most every 30 seconds, say) or a number of messages (flush every 1000 messages). This can
be overridden at the topic level, if desired. The setting always applies to each partition.

The most important configurations for performance are (1) compression, (2) sync vs async production, (3) batch size for async production, (4) fetch client
size.

Here is our server :configuration

kafka.log.default.flush.interval.ms=10000
kafka.log.file.size=1073741824
kafka.log.default.flush.scheduler.interval.ms=2000
kafka.log.flush.interval=3000
kafka.socket.send.buffer=2097152
kafka.socket.receive.buffer=2097152
kafka.monitoring.period.secs=30
kafka.num.threads=8
kafka.log.cleanup.interval.mins=30
kafka.log.retention.hours=168
kafka.zookeeper.sessiontimeoutms=6000
kafka.zookeeper.connection.timeout=2000
kafka.num.partitions=1

Client configuration varies a fair amount.

Monitoring

Our monitoring is done though a centralized monitoring system custom to LinkedIn, but it keys off the JMX stats exposed from Kafka. To see what is
available the easiest thing is just to start a Kafka broker and/or client and fire up JConsole and take a look.

Server Stats

bean name: kafka:type=kafka.SocketServerStats

 def getProduceRequestsPerSecond: Double
 def getFetchRequestsPerSecond: Double
 def getAvgProduceRequestMs: Double
 def getMaxProduceRequestMs: Double
 def getAvgFetchRequestMs: Double
 def getMaxFetchRequestMs: Double
 def getBytesReadPerSecond: Double
 def getBytesWrittenPerSecond: Double
 def getNumFetchRequests: Long
 def getNumProduceRequests: Long
 def getTotalBytesRead: Long
 def getTotalBytesWritten: Long
 def getTotalFetchRequestMs: Long
 def getTotalProduceRequestMs: Long

bean name: kafka:type=kafka.BrokerAllTopicStat kafka:type=kafka.BrokerAllTopicStat.[topic]

 def getMessagesIn: Long
 def getBytesIn: Long
 def getBytesOut: Long
 def getFailedProduceRequest: Long
 def getFailedFetchRequest: Long

bean name: kafka:type=kafka.LogFlushStats

http://incubator.apache.org/kafka/configuration.html

 def getFlushesPerSecond: Double
 def getAvgFlushMs: Double
 def getTotalFlushMs: Long
 def getMaxFlushMs: Double
 def getNumFlushes: Long

Producer stats

bean name: kafka:type=kafka.KafkaProducerStats

 def getProduceRequestsPerSecond: Double
 def getAvgProduceRequestMs: Double
 def getMaxProduceRequestMs: Double
 def getNumProduceRequests: Long

bean name: kafka.producer.Producer:type=AsyncProducerStats

 def getAsyncProducerEvents: Int
 def getAsyncProducerDroppedEvents: Int

Consumer stats

bean name: kafka:type=kafka.ConsumerStats

 def getPartOwnerStats: String
 def getConsumerGroup: String
 def getOffsetLag(topic: String, brokerId: Int, partitionId: Int): Long
 def getConsumedOffset(topic: String, brokerId: Int, partitionId: Int): Long
 def getLatestOffset(topic: String, brokerId: Int, partitionId: Int): Long

bean name: kafka:type=kafka.ConsumerAllTopicStat kafka:type=kafka.ConsumerTopicStat.[topic]

 def getMessagesPerTopic: Long
 def getBytesPerTopic: Long

bean name: kafka:type=kafka.SimpleConsumerStats

 def getFetchRequestsPerSecond: Double
 def getAvgFetchRequestMs: Double
 def getMaxFetchRequestMs: Double
 def getNumFetchRequests: Long
 def getConsumerThroughput: Double

Audit

The final alerting we do is on the correctness of the data delivery. We audit that every message that is sent is consumed by all consumers and measure
the lag for this to occur. For important topics we alert if a certain completeness is not achieved in a certain time period. The details of this are discussed in

.KAFKA-260

Zookeeper

Zookeeper is essential for the correct operation of Kafka. There are a number of things that must be done to keep Zookeeper running happily as we have
learned the hard way, hopefully Dave and Neha will add this since I don't know what we did.

Stable version

At LinkedIn, we are running Zookeeper 3.3.*. Version 3.3.3 has known serious issues regarding ephemeral node deletion and session expirations. After
running into those issues in production, we upgraded to 3.3.4 and have been running that smoothly for 1/2 year now.

https://issues.apache.org/jira/browse/KAFKA-260

1.

2.

3.

4.

5.

6.

7.

Operationalizing Zookeeper

Operationally, we do the following for a healthy Zookeeper installation -

Redundancy in the physical/hardware/network layout: try not to put them all in the same rack, decent (but don't go nuts) hardware, try to keep
redundant power and network paths, etc
I/O segregation: if you do a lot of write type traffic you'll almost definitely want the transaction logs on a different disk group than application logs
and snapshots (the write to the Zookeeper service has a synchronous write to disk, which can be slow).
Application segregation: Unless you really understand the application patterns of other apps that you want to install on the same box, it can be a
good idea to run Zookeeper in isolation (though this can be a balancing act with the capabilities of the hardware).
Use care with virtualization: It can work, depending on your cluster layout and read/write patterns and SLAs, but the tiny overheads introduced by
the virtualization layer can add up and throw off Zookeeper, as it can be very time sensitive
Zookeeper configuration and monitoring: It's java, make sure you give it 'enough' heap space (We usually run them with 3-5G, but that's mostly
due to the data set size we have here). Unfortunately we don't have a good formula for it. As far as monitoring, both JMZ and the 4 letter
commands are very useful, they do overlap in some cases (and in those cases we prefer the 4 letter commands, they seem more predictable, or
at the very least, they work better with the LI monitoring infrastructure)
Don't overbuild the cluster: large clusters, especially in a write heavy usage pattern, means a lot of intracluster communication (quorums on the
writes and subsequent cluster member updates), but don't underbuild it (and risk swamping the cluster).
Try to run on a 3-5 node cluster: Zookeeper writes use quorums and inherently that means having an odd number of machines in a cluster.
Remember that a 5 node cluster will cause writes to slow down compared to a 3 node cluster, but will allow more fault tolerance.

Overall, we try to keep the Zookeeper system as small as will handle the load (plus standard growth capacity planning) and as simple as possible. We try
not to do anything fancy with the configuration or application layout as compared to the official release as well as keep it as self contained as possible. For
these reasons, we tend to skip the OS packaged versions, since it has a tendency to try to put things in the OS standard hierarchy, which can be 'messy',
for want of a better way to word it.

	Operations

