Kafka replication detailed design V2

Differences between V1 and V2
Paths stored in Zookeeper
Key data structures
Key algorithms
O Zookeeper listeners ONLY on the leader
O Zookeeper listeners on all brokers
© Configuration parameters
O Broker startup
o]
o]

Leader election
State change events
= On every broker
® Leader change
® On State change
" On the leader
® On reassignment of partitions
® State change communication
O State change operations
= Start replica
" Close replica
= Become follower
" Become leader
© Admin commands
= Create topic
= Delete topic
= Add partition to existing topic
® Remove partition for existing topic
© Handling produce requests
© Message replication
= Commit thread on the leader
= Follower fetching from leader
® Atthe leader
® At the follower

Differences between V1 and V2

This detailed design differs from the original detailed design in the following areas -

1. This design aims to remove split-brain and herd effect issues in the V1 design. A partition has only one brain (on the leader) and all brokers only
respond to state changes that are meant for them (as decided by the leader).

2. The state machine in this design is completely controlled only by the leader for each partition. Each follower changes its state only based on such
a request from the leader for a particular partition. Leader co-ordinated state machine allows central state machine verification and allows it to fail
fast.

3. This design introduces an epoch or generation id per partition, which is a non-decreasing value for a partition. The epoch increments when the
leader for a partition changes.

4. This design handles delete partition or delete topic state changes for dead brokers by queuing up state change requests for a broker in
Zookeeper.

5. This design scales better wrt to number of ZK watches, since it registers fewer watches compared to V1. The motivation is to be able to reduce
the load on ZK when the Kafka cluster grows to thousands of partitions. For example, if we have a cluster of 3 brokers hosting 1000 topics with 3
partitions each, the V1 design requires registering 15000 watches. The V2 design requires registering 3000 watches.

6. This design ensures that leader change ZK notifications are not queued up on any other notifications and can happen instantaneously.

7. This design allows explicit monitoring of

a. the entire lifecycle of a state change -

i. leader, broker id O, requested start-replica for topic foo partition O, to broker id 1, at epoch 10

ii. leader, broker id 0, requested start-replica for topic foo partition O, to broker id 2, at epoch 10

iii. follower, broker id 1, received start-replica for topic foo partition 0, from leader 0, at epoch 10

iv. follower, broker id 2, received start-replica for topic foo partition 0, from leader 0, at epoch 10

v. follower, broker id 1, completed start-replica for topic foo partition 0, request from leader 0, at epoch 10

vi. follower, broker id 2, completed start-replica for topic foo partition 0, request from leader 0, at epoch 10
b. the backup of state change requests, on slow followers

Paths stored in Zookeeper

Notation: When an element in a path is denoted [xyz], that means that the value of xyz is not fixed and there is in fact a znode for each possible value of
xyz. For example /topics/[topic] would be a directory named /topics containing a directory for each topic name. An arrow -> is used to indicate the contents
of a znode. For example /hello -> world would indicate a znode /hello containing the value "world". A path is persistent unless it's marked as ephemeral.
We store the following paths in Zookeeper:

1. Stores the information of all live brokers.

https://issues.apache.org/jira/secure/attachment/12509575/kafka_replication_detailed_design_v2.pdf

Key

/ brokers/ids/[broker_id] --> host:port (epheneral; created by adnin)

. Stores for each partition, a list of the currently assigned replicas. For each replica, we store the id of the broker to which the replica is assigned.

The first replica is the preferred replica. Note that for a given partition, there is at most 1 replica on a broker. Therefore, the broker id can be used
as the replica id

/ brokers/topics/[topic]/[partition_id]/replicas --> {broker_id .} (created by adm n)

. Stores the id of the replica that's the current leader of this partition

/ brokers/topics/[topic]/[partition_id]/leader --> broker_id (epheneral) (created by |eader)

. Stores the id of the set of replicas that are in-sync with the leader

/ brokers/topics/[topic]/[partition_id]/ISR --> {broker_id, .} (created by |eader)

. This path is used when we want to reassign some partitions to a different set of brokers. For each partition to be reassigned, it stores a list of new

replicas and their corresponding assigned brokers. This path is created by an administrative process and is automatically removed once the
partition has been moved successfully

/ brokers/partitions_reassigned/[topic]/[partition_id] --> {broker_id .} (created by admn)

. This path is used by the leader of a partition to enqueue state change requests to the follower replicas. The various state change requests include

start replica, close replica. This path is created by the add brokers admin command. This path is only deleted by the remove brokers admin
command. The purpose of making this path persistent is to cleanly handle state changes like delete topic and reassign partitions even when a
broker is temporarily unavailable (for example, being bounced).

/ brokers/state/[broker_id] --> { state change requests ... } (created by adnin)

data structures

Every broker stores a list of partitions and replicas assigned to it. The current leader of a partition further maintains 3 sets: AR, ISR, CUR and RAR, which
correspond to the set of replicas that are assigned to the patrtition, in-sync with the leader, catching up with the leader, and being reassigned to other
brokers. Normally, ISR is a subset of AR and AR = ISR + CUR. The leader of a partition maintains a commitQ and uses it to buffer all produce requests to
be committed. For each replica assigned to a broker, the broker periodically stores its HW in a checkpoint file.

Replica { /1l a replica of a partition
broker _id ©oint
partition : Partition
i sLocal . Bool ean /1 is this replica local to this broker
| og Log /1 local log associated with this replica
hw | ong /1 offset of the last comitted nessage
l eo I ong /1 1og end of fset
}
Partition { //a partition in a topic
topic : string
partition_id coint
| eader . Replica /1 the leader replica of this partition
commi t Q ;. Queue /1 produce requests pending conmt at the |eader
AR : Set[Replical /1 replicas assigned to this partition
I SR Set [Repl i ca] /1 1n-sync replica set, nmintained at the |eader
CUR Set [Repl i ca] /] Catch-up replica set, nmintained at the |eader
RAR Set [Repl i ca] /| Reassigned replica set, maintained at the |eader

Key

algorithms

Zookeeper listeners ONLY on the leader

1. Partition-reassigned listener:
a. child change on /brokers/partitions_reassigned
b. child change on /brokers/partitions_reassigned/[topic]

Zookeeper listeners on all brokers

1. a. Leader-change listener: value change on /brokers/topics/[topic]/[partition_id]/leader
b. State-change listener: child change on /brokers/state/[broker_id]

Configuration parameters

1. a. LeaderElectionWaitTime: controls the maximum amount of time that we wait during leader election.
b. KeeplnSyncTime: controls the maximum amount of time that a leader waits before dropping a follower from the in-sync replica set.

Broker startup

Each time a broker starts up, it calls brokerStartup() and the algorithms are described below

br oker Startup()
{
create /brokers/state/[broker_id] path if it doesn’t already exist
regi ster the state change handler to listen on child change ZK notifications on /brokers/state/[broker_id]
regi ster session expiration |istener
drain the state change queue
get replica info fromZK and conpute AR, a list of replicas assigned to this broker
for each r in AR
{
subscribe to | eader changes for the r’s partition
startReplica(r)
}
/'l broker startup procedure is conplete. Register is broker id in ZK to announce the availability of this
br oker
register its broker_id in /brokers/ids/[broker_id] in zK

}

Leader election

| eader El ection(r: Replica)
read the current ISR and AR for r.partition.partition_id from zK
if((r in AR) & (ISR is enpty || r in ISR))

{
wait for PreferredReplicaTine if r is not the preferred replica
if(successfully wite r as the current |eader of r.partition in ZK)
beconeLeader (r, ISR, CUR
el se
beconeFol | ower (r)
}

State change events

On every broker

Leader change

This leader change listener is registered on every broker hosting a partition p. Each time it is triggered, the following procedure is executed -

onLeader Change()
{
if(broker_id is registered under /brokers/topics/[topic]/[partition_id]/replicas)
| eader El ection(r)

On State change

Each broker has a ZK path that it listens to for state change requests from the leader

st at eChangelLi st ener () {
/'l listens to state change requests issued by the | eader and acts on those

drain the state change queue

read next state change request

Let r be the replica that the state change request is sent for.
/1 this should not happen

Throw an error if r is not hosted on this broker

Let request Epoch be the epoch of the state change request

i f(cl oseReplicaRequest)

{
/1 we don’t need to check epoch here to be able to handle delete topic/delete partition for dead brokers.
cl oseReplica(r)

}

i f(startReplicaRequest)

{

Let latestPartitionEpoch be the |atest epoch for this partition, got by reading /brokers/topics/[topic]/
[partition]/ISR
if(leader for r.partition doesn't exist) {
/1 this can only happen for new topics or new partitions for existing topics
startReplica(r)
}else if(request Epoch == | atestPartitionEpoch) {
/1 this is to ensure that if a follower is slow, and reads a state change request queued up by a
previous | eader, it ignores the request
startReplica(r)
}

On the leader

On reassignment of partitions

Each time a partition reassigned event is triggered on the leader, it calls onPartitionReassigned()

onPartitionsReassigned()

{
if(this broker is the |eader for [partition_id])
{
p. RAR = the new replicas from/brokers/partitions_reassigned/[topic]/[partition_id]
AR = /brokers/topics/[topic]/[partition_id]/replicas
newRepl i cas = p. RAR - AR
for(newReplica <- newReplicas)
sendSt at eChange(“start-replica”, newReplica. broker_id, epoch)
if(p.RAR i s enpty)
{
for(assignedReplica <- AR
sendSt at eChange("cl ose-replica", assignedReplica.broker_id, epoch)
}
}

State change communication

The leader uses this APl to communicate a state change request to the followers

sendSt at eChange(st at eChange, fol | ower Brokerld, |eaderEpoch)

{

st at eChangeQ = new St at eChangeQueue(“/ br okers/ state/fol | ower Broker!d")
st at eChangeRequest = new St at eChangeRequest (st at eChange, | eader Epoch)
/'l check if the state change Qis full. This can happen if a broker is offline for a long time
if(stateChangeQisFull) {
/1 this operation retains only one close-replica request for a partition, the one with the | atest epoch.
This is to ensure that an offline broker, on startup, will delete old topics and partitions, which it hosted
before going offline. You don’t have to retain any start-replica requests for a partition
st at eChangeQ shri nk
[/ if the queue is still full, log an error
t hrow new Fol | ower St at eChangeQueueFul |

}
st at eChangeQ put (st at eChangeRequest)

State change operations

Start replica

This state change is requested by the leader or the admin command for a new replica assignment

startReplica(r: Replica) {
if(broker_id not in /brokers/topics/[r.topic]/[r.partition]/replicas)
t hrow Not Repl i caForPartitionException()
if(r'slog is not already started) {
do local recovery of r's log
r.hw = mn(last checkpointed HWfor r, r.leo)
regi ster a | eader-change |listener on partition r.partition.partition_id
}
if(a leader does not exist for partition r.partition.partition_id in ZK)
| eader El ection(r)

el se {
//this broker is not the leader, then it is a follower since it is inthe ARIlist for this partition

if(this broker is not already the follower of the current |eader)
beconeFol | ower (r)

Close replica

This state change is requested by the leader when a topic or partition is deleted or moved to another broker

cl oseReplica(r: Replica)
{

stop the fetcher associated with r, if one exists
close and delete r

Become follower

This state change is requested by the leader when the leader for a replica changes

beconeFol | ower (r: Replica)
{
/1 this is required if this replica was the |ast |eader
stop the commit thread, if any
stop the current ReplicaFetcherThread, if any
truncate the log to r.hw
start a new ReplicaFetcherThread to the current |eader of r, fromoffset r.leo
start HWcheckpoint thread for r

Become leader

This state change is done by the new leader

beconmeLeader (r: Replica, ISR Set[Replica], AR Set[Replical)

{
/1 get a new epoch value and wite it to the |eader path
epoch = get NewEpoch()
/ brokers/topics/[r.partition.topic]/[r.partition.pid]/|eader=broker_id, epoch
/ brokers/topics/[r.partition.topic]/[r.partition.pid]/lSR=lISR, epoch
stop HW checkpoint thread for r
r.hw=r.leo // TODO check if this should actually be r.hw = | ast checkpointed HVfor r
wait until every live replica in AR catches up (i.e. its leo == r.hw) or a KeeplnSyncTi ne has passed
r.partition.I SR = the current set of replicas in sync with r
r.partition.CUR = AR - | SR
wite r.partition.ISRin zZK
r.partition.RAR = replicas in /brokers/partitions_reassigned/[topic]/[partition_id] in zZK
r.partition.leader =r /1 this enables reads/wites to this partition on this broker
start a conmmit thread on r.partition
start HWcheckpoint thread for r
}

Admin commands

This section describes the algorithms for various admin commands like create/delete topic, add/remove partition.

Create topic

The admin commands does the following while creating a new topic

createTopi c(topic, nunPartitions, replicationFactor, replicaAssignnentStr)
{
if(!cleanFail edTopi cCreationAttenpt(topic))
{
error(“Topic topic exists with live partitions”)
exit
}
if(replicaAssignnentStr == “") {
/] assignReplicas will always assign partitions only to online brokers
replicaAssignment = assignReplicas(topic, nunPartitions, replicationFactor)

}

/1 create topic path in zZK

create /brokers/topics/topic

for(partition <- replicaAssignnent) {
addPartition(topic, partition.id, partition.replicas)

}

Il report successfully started partitions for this topic

}
wai t Ti | | St at eChangeRequest Consuned(partition.replicas, tinmeout)
{
regi ster watch on state change path for each replica
In the listener, use a condition variable to await(tinmeout). If it doesn't fire return false, else return
true

}
cl eanFai | edTopi cCreati onAtt enpt s(topic)
{
t opi csForPartitionsReassi gnment = |'s /brokers/partitions_reassigned
for(topic <- topicsForPartitionsReassignnment)
{
partitionsCreated = Is /brokers/partitions_reassi gned/topic
cl eanupFail ed = false
for(partition <- partitionsCreated)
{
if(/brokers/topics/topic/partition/replicas path exists)
{
del ete /brokers/partitions_reassigned/topic/partition
error(“Cannot cleanup. Topic exists with live partition”)
cl eanupFai l ed = true
}
if(cleanupFailed) {
if(/brokers/partitions_reassigned/topic has no children)
delete /brokers/partitions_reassigned/topic
return fal se
}
/] partition paths can be safely del eted
for(partition <- partitionsCreated)
{
read the /brokers/partitions_reassigned/topic/partition path
for each broker listed in the above step, sendStateChange(“close-replica”, [broker_id], -1)
del ete /brokers/topics/topic/partitions/partition
del ete /brokers/partitions_reassigned/topic/partition
}
}
if(/brokers/topics/topic has no children)
del ete / brokers/topics/topic
}

Delete topic

del et eTopi c(t opic)

{
partitionsForTopic = |s /brokers/topics/topic
for(partition <- partitionsForTopic) {
if(!deletePartition(topic, partition))
{
error(“Failed to delete partition for topic”)
exit
}
}
/'l delete topic path in ZK
del ete /brokers/topics/topic
}

Add partition to existing topic

addPartition(topic, partition, replicas)
{
// wite the partitions reassigned path for this create topic command
/ brokers/partitions_reassigned/topic/partition=replicas
/] start replicas for this new partition
for(replica <- replicas)
sendSt at eChange(“start-replica”, replica.brokerld, -1)
/1 wait till state change request is consuned by all replicas
if(!waitTillStateChangeRequest Consuned(partition.replicas, tinmeout))
{
error(“Failed to create topic partition partitionld for timeout ns”)
exit
}
/] create partition paths in zZK
/ brokers/topics/topic/partitionld/replicas=replicas
del ete /brokers/partitions_reassigned/topic/partitionld

Remove partition for existing topic

del etePartition(topic, partition)
{
/1 enpty list for partition reassignnent neans delete partition
[brokers/partitions_reassigned/topic/partition=""
/1 wait till replica is closed by all replicas
if(!waitTill StateChangeRequest Consunmed(partition.replicas, tinmeout))
{
error(“Failed to delete topic after tinmeout ns")
return fal se
}
/] create partition paths in zZK
del ete /brokers/topics/topic/partitionld
del ete /brokers/partitions_reassigned/topic/partitionld

Handling produce requests

Produce request handler on the leader

produceRequest Handl er (pr: ProduceRequest)
{
if(the request partition pr.partition doesn't have |eader replica on this broker)
t hrow Not Leader Excepti on
log = r.partition.|eader.!|og
append pr.nmessages to | og
pr.offset = 10g.LEO
add pr to pr.partition.commitQ

Message replication

Commit thread on the leader

while(true) {
pr = comit Q dequeue
canCommit = fal se
whil e(!canCommit) {
canCommit = true
for each r in ISR
if(!offsetReached(r, pr.offset)) {
canCommit = fal se
br eak
}
if(!canCommit) {
p. CUR add(r)
p. I SR del ete(r)
wite p.ISR to ZK

for each ¢ in CUR
if(c.leo >= pr.offset) {
p. 1SR add(c); p.CUR delete(c); wite p.ISRto zZK
}
checkReassi gnedRepl i cas(pr, p.RAR p.ISR)
checkLoadBal anci ng()
r.hw = pr.of fset /1 increment the HWto indicate that pr is comitted
send ACK to the client that pr is committed

}

of f set Reached(r: Replica, offset: Long) {
if(r.leo beconmes equal or larger than offset within KeeplnSyncTine) return true
return fal se

}

checkLoadBal ancing() { // see if we need to switch the |leader to the preferred replica
if(leader replica is not the preferred one & the preferred replicais in ISR {
delete /brokers/topics/[topic]/[partition_id]/leader in ZK
stop this commt thread
stop the HW checkpoi nt thread
}
}

checkReassi gnedRepl i cas(pr: ProduceRequest, RAR Set[Replica], ISR Set[Replica])

{

/1 see if all reassigned replicas have fully caught up and ol der replicas have stopped fetching,

switch to those replicas
/1 optimzation, do the check periodically
If (every replica in RAR has its leo >= pr.offset) {

if(!sentd oseReplica.get) {
ol dReplicas = AR - RAR

if so,

for(ol dReplica <- ol dReplicas) {
if(r.broker_id != broker_id)
sendSt at eChange(“cl ose-replica”, ol dReplica. broker_id, epoch)

}
sent O oseRepl i ca. set(true)
telse {
/1 close replica is already sent. Wait until the replicas are closed or probably tinmeout and raise
error
if(broker_id is in (AR - RAR) && (other replicas in (AR - RAR) are not in ISR anynore)) {
/1 leader is not in the reassigned replicas |ist
conpl etePartiti onReassi gnment (RAR, | SR, AR, true)
sent O oseReplica. set (fal se)
}
else if(every replica in (ARRAR) is not in ISR anynore) {
conpl etePartiti onReassi gnment (RAR, | SR, AR, false)
sent C oseRepl i ca. set (fal se)
}
}
}

conpl etePartitionsReassi gnment (RAR Set[Replica], ISR Set[Replica], AR Set[Replica], stopCommtThread:
Bool ean)

{
/I newy assigned replicas are in-sync, switch over to the new replicas
/Ineed (RAR + ISR) in case we fail right after here
wite (RAR + ISR) as the new ISR in ZK
updat e /brokers/topics/[topic]/[partition_id]/replicas in ZK with the new replicas in RAR
if(stopCommitThread || (broker_id is not preferred replica))
{
if(this broker_id is not in the new AR)
sendSt at eChange(“cl ose-replica”, broker_id, epoch)
del ete /brokers/partitions_reassigned/[topic]/[partition_id] in ZK
//triggers |eader election
del ete /brokers/topics/[topic]/[partition_id]/leader in ZK
stop this commit thread
}
}

Follower fetching from leader

A follower keeps sending ReplicaFetcherRequests to the leader. The process at the leader and the follower are described below -

Repl i caFet chReqeust {
topic: String
partition_id: Int
replica_id: Int
of fset: Long

}

Repl i caFet chResponse {
hw. Long /'l the offset of the |last nessage committed at the |eader
nmessages: MessageSet /'l fetched nessages

At the leader

replicaFetch (f: ReplicaFetchRequest) { /1 handl er for ReplicaFetchRequest at

| eader = getlLeaderReplica(f.topic, f.partition_id)

if(leader == null) throw NotLeader Excepti on
response = new ReplicaFet cher Response
getReplica(f.topic, f.partition_id, f.replica_id).leo = f.offset
response. nessages = fetch nmessages starting fromf.offset fromleader.|og
response. hw = | eader. hw
send response back

At the follower

ReplicaFetcherThread for Replicar:

while(true) {
send ReplicaFetchRequest to | eader and get response: ReplicaFetcher Response back
append response. nessages to r's |og
r.hw = response. hw
advance of fset in ReplicaFetchRequest

| eader

	Kafka replication detailed design V2

