
1.

2.

3.

4.

5.

6.
7.

a.
i.
ii.
iii.
iv.
v.
vi.

b.

1.

Kafka replication detailed design V2

Differences between V1 and V2
Paths stored in Zookeeper
Key data structures
Key algorithms

Zookeeper listeners ONLY on the leader
Zookeeper listeners on all brokers
Configuration parameters
Broker startup
Leader election
State change events

On every broker
Leader change
On State change

On the leader
On reassignment of partitions
State change communication

State change operations
Start replica
Close replica
Become follower
Become leader

Admin commands
Create topic
Delete topic
Add partition to existing topic
Remove partition for existing topic

Handling produce requests
Message replication

Commit thread on the leader
Follower fetching from leader

At the leader
At the follower

Differences between V1 and V2
This detailed design differs from the in the following areas -original detailed design

This design aims to remove split-brain and herd effect issues in the V1 design. A partition has only one brain (on the leader) and all brokers only
respond to state changes that are meant for them (as decided by the leader).
The state machine in this design is completely controlled only by the leader for each partition. Each follower changes its state only based on such
a request from the leader for a particular partition. Leader co-ordinated state machine allows central state machine verification and allows it to fail
fast.
This design introduces an epoch or generation id per partition, which is a non-decreasing value for a partition. The epoch increments when the
leader for a partition changes.
This design handles delete partition or delete topic state changes for dead brokers by queuing up state change requests for a broker in
Zookeeper.
This design scales better wrt to number of ZK watches, since it registers fewer watches compared to V1. The motivation is to be able to reduce
the load on ZK when the Kafka cluster grows to thousands of partitions. For example, if we have a cluster of 3 brokers hosting 1000 topics with 3
partitions each, the V1 design requires registering 15000 watches. The V2 design requires registering 3000 watches.
This design ensures that leader change ZK notifications are not queued up on any other notifications and can happen instantaneously.
This design allows explicit monitoring of

the entire lifecycle of a state change -
leader, broker id 0, requested start-replica for topic foo partition 0, to broker id 1, at epoch 10
leader, broker id 0, requested start-replica for topic foo partition 0, to broker id 2, at epoch 10
follower, broker id 1, received start-replica for topic foo partition 0, from leader 0, at epoch 10
follower, broker id 2, received start-replica for topic foo partition 0, from leader 0, at epoch 10
follower, broker id 1, completed start-replica for topic foo partition 0, request from leader 0, at epoch 10
follower, broker id 2, completed start-replica for topic foo partition 0, request from leader 0, at epoch 10

the backup of state change requests, on slow followers

Paths stored in Zookeeper
Notation: When an element in a path is denoted [xyz], that means that the value of xyz is not fixed and there is in fact a znode for each possible value of
xyz. For example /topics/[topic] would be a directory named /topics containing a directory for each topic name. An arrow -> is used to indicate the contents
of a znode. For example /hello -> world would indicate a znode /hello containing the value "world". A path is persistent unless it’s marked as ephemeral.

We store the following paths in Zookeeper:

Stores the information of all live brokers.

https://issues.apache.org/jira/secure/attachment/12509575/kafka_replication_detailed_design_v2.pdf

1.

2.

3.

4.

5.

6.

1.

/brokers/ids/[broker_id] --> host:port (ephemeral; created by admin)

Stores for each partition, a list of the currently assigned replicas. For each replica, we store the id of the broker to which the replica is assigned.
The first replica is the preferred replica. Note that for a given partition, there is at most 1 replica on a broker. Therefore, the broker id can be used
as the replica id

/brokers/topics/[topic]/[partition_id]/replicas --> {broker_id …} (created by admin)

Stores the id of the replica that’s the current leader of this partition

 /brokers/topics/[topic]/[partition_id]/leader --> broker_id (ephemeral) (created by leader)

Stores the id of the set of replicas that are in-sync with the leader

 /brokers/topics/[topic]/[partition_id]/ISR --> {broker_id, …} (created by leader)

This path is used when we want to reassign some partitions to a different set of brokers. For each partition to be reassigned, it stores a list of new
replicas and their corresponding assigned brokers. This path is created by an administrative process and is automatically removed once the
partition has been moved successfully

 /brokers/partitions_reassigned/[topic]/[partition_id] --> {broker_id …} (created by admin)

This path is used by the leader of a partition to enqueue state change requests to the follower replicas. The various state change requests include
start replica, close replica. This path is created by the add brokers admin command. This path is only deleted by the remove brokers admin
command. The purpose of making this path persistent is to cleanly handle state changes like delete topic and reassign partitions even when a
broker is temporarily unavailable (for example, being bounced).

 /brokers/state/[broker_id] --> { state change requests ... } (created by admin)

Key data structures
Every broker stores a list of partitions and replicas assigned to it. The current leader of a partition further maintains 3 sets: AR, ISR, CUR and RAR, which
correspond to the set of replicas that are assigned to the partition, in-sync with the leader, catching up with the leader, and being reassigned to other
brokers. Normally, ISR is a subset of AR and AR = ISR + CUR. The leader of a partition maintains a commitQ and uses it to buffer all produce requests to
be committed. For each replica assigned to a broker, the broker periodically stores its HW in a checkpoint file.

Replica { // a replica of a partition
 broker_id : int
 partition : Partition
 isLocal : Boolean // is this replica local to this broker
 log : Log // local log associated with this replica
 hw : long // offset of the last committed message
 leo : long // log end offset
}

Partition { //a partition in a topic
 topic : string
 partition_id : int
 leader : Replica // the leader replica of this partition
 commitQ : Queue // produce requests pending commit at the leader
 AR : Set[Replica] // replicas assigned to this partition
 ISR : Set[Replica] // In-sync replica set, maintained at the leader
 CUR : Set[Replica] // Catch-up replica set, maintained at the leader
 RAR : Set[Replica] // Reassigned replica set, maintained at the leader
}

Key algorithms

Zookeeper listeners ONLY on the leader

1.
a.
b.

1. a.
b.

1. a.
b.

Partition-reassigned listener:
child change on /brokers/partitions_reassigned
child change on /brokers/partitions_reassigned/[topic]

Zookeeper listeners on all brokers

Leader-change listener: value change on /brokers/topics/[topic]/[partition_id]/leader
State-change listener: child change on /brokers/state/[broker_id]

Configuration parameters

LeaderElectionWaitTime: controls the maximum amount of time that we wait during leader election.
KeepInSyncTime: controls the maximum amount of time that a leader waits before dropping a follower from the in-sync replica set.

Broker startup

Each time a broker starts up, it calls brokerStartup() and the algorithms are described below

brokerStartup()
{
 create /brokers/state/[broker_id] path if it doesn’t already exist
 register the state change handler to listen on child change ZK notifications on /brokers/state/[broker_id]
 register session expiration listener
 drain the state change queue
 get replica info from ZK and compute AR, a list of replicas assigned to this broker
 for each r in AR
 {
 subscribe to leader changes for the r’s partition
 startReplica(r)
 }
 // broker startup procedure is complete. Register is broker id in ZK to announce the availability of this
broker
 register its broker_id in /brokers/ids/[broker_id] in ZK
}

Leader election

leaderElection(r: Replica)
 read the current ISR and AR for r.partition.partition_id from ZK
 if((r in AR) && (ISR is empty || r in ISR))
 {
 wait for PreferredReplicaTime if r is not the preferred replica
 if(successfully write r as the current leader of r.partition in ZK)
 becomeLeader(r, ISR, CUR)
 else
 becomeFollower(r)
 }
}

State change events

On every broker

Leader change

This leader change listener is registered on every broker hosting a partition p. Each time it is triggered, the following procedure is executed -

onLeaderChange()
{
 if(broker_id is registered under /brokers/topics/[topic]/[partition_id]/replicas)
 leaderElection(r)
}

On State change

Each broker has a ZK path that it listens to for state change requests from the leader

stateChangeListener() {
// listens to state change requests issued by the leader and acts on those

 drain the state change queue
 read next state change request
 Let r be the replica that the state change request is sent for.
 // this should not happen
 Throw an error if r is not hosted on this broker
 Let requestEpoch be the epoch of the state change request
 if(closeReplicaRequest)
 {
 // we don’t need to check epoch here to be able to handle delete topic/delete partition for dead brokers.
 closeReplica(r)
 }
 if(startReplicaRequest)
 {
 Let latestPartitionEpoch be the latest epoch for this partition, got by reading /brokers/topics/[topic]/
[partition]/ISR
 if(leader for r.partition doesn’t exist) {
 // this can only happen for new topics or new partitions for existing topics
 startReplica(r)
 }else if(requestEpoch == latestPartitionEpoch) {
 // this is to ensure that if a follower is slow, and reads a state change request queued up by a
previous leader, it ignores the request
 startReplica(r)
 }
 }
}

On the leader

On reassignment of partitions

Each time a partition reassigned event is triggered on the leader, it calls onPartitionReassigned()

onPartitionsReassigned()
{
 if(this broker is the leader for [partition_id])
 {
 p.RAR = the new replicas from /brokers/partitions_reassigned/[topic]/[partition_id]
 AR = /brokers/topics/[topic]/[partition_id]/replicas
 newReplicas = p.RAR - AR
 for(newReplica <- newReplicas)
 sendStateChange(“start-replica”, newReplica.broker_id, epoch)
 if(p.RAR is empty)
 {
 for(assignedReplica <- AR)
 sendStateChange("close-replica", assignedReplica.broker_id, epoch)
 }
 }
}

State change communication

The leader uses this API to communicate a state change request to the followers

sendStateChange(stateChange, followerBrokerId, leaderEpoch)
{
 stateChangeQ = new StateChangeQueue(“/brokers/state/followerBrokerId”)
 stateChangeRequest = new StateChangeRequest(stateChange, leaderEpoch)
 // check if the state change Q is full. This can happen if a broker is offline for a long time
 if(stateChangeQ.isFull) {
 // this operation retains only one close-replica request for a partition, the one with the latest epoch.
This is to ensure that an offline broker, on startup, will delete old topics and partitions, which it hosted
before going offline. You don’t have to retain any start-replica requests for a partition
 stateChangeQ.shrink
 // if the queue is still full, log an error
 throw new FollowerStateChangeQueueFull
 }
 stateChangeQ.put(stateChangeRequest)
}

State change operations

Start replica

This state change is requested by the leader or the admin command for a new replica assignment

startReplica(r: Replica) {
 if(broker_id not in /brokers/topics/[r.topic]/[r.partition]/replicas)
 throw NotReplicaForPartitionException()
 if(r's log is not already started) {
 do local recovery of r's log
 r.hw = min(last checkpointed HW for r, r.leo)
 register a leader-change listener on partition r.partition.partition_id
 }
 if(a leader does not exist for partition r.partition.partition_id in ZK)
 leaderElection(r)
 else {
 //this broker is not the leader, then it is a follower since it is in the AR list for this partition
 if(this broker is not already the follower of the current leader)
 becomeFollower(r)
 }
}

Close replica

This state change is requested by the leader when a topic or partition is deleted or moved to another broker

closeReplica(r: Replica)
{
 stop the fetcher associated with r, if one exists
 close and delete r
}

Become follower

This state change is requested by the leader when the leader for a replica changes

becomeFollower(r: Replica)
{
 // this is required if this replica was the last leader
 stop the commit thread, if any
 stop the current ReplicaFetcherThread, if any
 truncate the log to r.hw
 start a new ReplicaFetcherThread to the current leader of r, from offset r.leo
 start HW checkpoint thread for r
}

Become leader

This state change is done by the new leader

becomeLeader(r: Replica, ISR: Set[Replica], AR: Set[Replica])
{
 // get a new epoch value and write it to the leader path
 epoch = getNewEpoch()
 /brokers/topics/[r.partition.topic]/[r.partition.pid]/leader=broker_id, epoch
 /brokers/topics/[r.partition.topic]/[r.partition.pid]/ISR=ISR;epoch
 stop HW checkpoint thread for r
 r.hw = r.leo // TODO: check if this should actually be r.hw = last checkpointed HW for r
 wait until every live replica in AR catches up (i.e. its leo == r.hw) or a KeepInSyncTime has passed
 r.partition.ISR = the current set of replicas in sync with r
 r.partition.CUR = AR - ISR
 write r.partition.ISR in ZK
 r.partition.RAR = replicas in /brokers/partitions_reassigned/[topic]/[partition_id] in ZK
 r.partition.leader = r // this enables reads/writes to this partition on this broker
 start a commit thread on r.partition
 start HW checkpoint thread for r
}

Admin commands

This section describes the algorithms for various admin commands like create/delete topic, add/remove partition.

Create topic

The admin commands does the following while creating a new topic

createTopic(topic, numPartitions, replicationFactor, replicaAssignmentStr)
{
 if(!cleanFailedTopicCreationAttempt(topic))
 {
 error(“Topic topic exists with live partitions”)
 exit
 }
 if(replicaAssignmentStr == “”) {
 // assignReplicas will always assign partitions only to online brokers
 replicaAssignment = assignReplicas(topic, numPartitions, replicationFactor)
 }

 // create topic path in ZK
 create /brokers/topics/topic
 for(partition <- replicaAssignment) {
 addPartition(topic, partition.id, partition.replicas)
 }
 // report successfully started partitions for this topic
}
waitTillStateChangeRequestConsumed(partition.replicas, timeout)
{
 register watch on state change path for each replica
 In the listener, use a condition variable to await(timeout). If it doesn’t fire return false, else return
true
}

cleanFailedTopicCreationAttempts(topic)
{
 topicsForPartitionsReassignment = ls /brokers/partitions_reassigned
 for(topic <- topicsForPartitionsReassignment)
 {
 partitionsCreated = ls /brokers/partitions_reassigned/topic
 cleanupFailed = false
 for(partition <- partitionsCreated)
 {
 if(/brokers/topics/topic/partition/replicas path exists)
 {
 delete /brokers/partitions_reassigned/topic/partition
 error(“Cannot cleanup. Topic exists with live partition”)
 cleanupFailed = true
 }
 }
 if(cleanupFailed) {
 if(/brokers/partitions_reassigned/topic has no children)
 delete /brokers/partitions_reassigned/topic
 return false
 }
 // partition paths can be safely deleted
 for(partition <- partitionsCreated)
 {
 read the /brokers/partitions_reassigned/topic/partition path
 for each broker listed in the above step, sendStateChange(“close-replica”, [broker_id], -1)
 delete /brokers/topics/topic/partitions/partition
 delete /brokers/partitions_reassigned/topic/partition
 }
 }
 if(/brokers/topics/topic has no children)
 delete /brokers/topics/topic
}

Delete topic

deleteTopic(topic)
{
 partitionsForTopic = ls /brokers/topics/topic
 for(partition <- partitionsForTopic) {
 if(!deletePartition(topic, partition))
 {
 error(“Failed to delete partition for topic”)
 exit
 }
 }
 // delete topic path in ZK
 delete /brokers/topics/topic
}

Add partition to existing topic

addPartition(topic, partition, replicas)
{
 // write the partitions reassigned path for this create topic command
 /brokers/partitions_reassigned/topic/partition=replicas
 // start replicas for this new partition
 for(replica <- replicas)
 sendStateChange(“start-replica”, replica.brokerId, -1)
 // wait till state change request is consumed by all replicas
 if(!waitTillStateChangeRequestConsumed(partition.replicas, timeout))
 {
 error(“Failed to create topic partition partitionId for timeout ms”)
 exit
 }
 // create partition paths in ZK
 /brokers/topics/topic/partitionId/replicas=replicas
 delete /brokers/partitions_reassigned/topic/partitionId
}

Remove partition for existing topic

deletePartition(topic, partition)
{
 // empty list for partition reassignment means delete partition
 /brokers/partitions_reassigned/topic/partition=””
 // wait till replica is closed by all replicas
 if(!waitTillStateChangeRequestConsumed(partition.replicas, timeout))
 {
 error(“Failed to delete topic after timeout ms”)
 return false
 }
 // create partition paths in ZK
 delete /brokers/topics/topic/partitionId
 delete /brokers/partitions_reassigned/topic/partitionId
}

Handling produce requests

Produce request handler on the leader

produceRequestHandler(pr: ProduceRequest)
{
 if(the request partition pr.partition doesn't have leader replica on this broker)
 throw NotLeaderException
 log = r.partition.leader.log
 append pr.messages to log
 pr.offset = log.LEO
 add pr to pr.partition.commitQ
}

Message replication

Commit thread on the leader

while(true) {
 pr = commitQ.dequeue
 canCommit = false
 while(!canCommit) {
 canCommit = true
 for each r in ISR
 if(!offsetReached(r, pr.offset)) {
 canCommit = false
 break
 }
 if(!canCommit) {
 p.CUR.add(r)
 p.ISR.delete(r)
 write p.ISR to ZK
 }
 }
 for each c in CUR
 if(c.leo >= pr.offset) {
 p.ISR.add(c); p.CUR.delete(c); write p.ISR to ZK
 }
 checkReassignedReplicas(pr, p.RAR, p.ISR)
 checkLoadBalancing()
 r.hw = pr.offset // increment the HW to indicate that pr is committed
 send ACK to the client that pr is committed
}

offsetReached(r: Replica, offset: Long) {
 if(r.leo becomes equal or larger than offset within KeepInSyncTime) return true
 return false
}

checkLoadBalancing() { // see if we need to switch the leader to the preferred replica
 if(leader replica is not the preferred one & the preferred replica is in ISR) {
 delete /brokers/topics/[topic]/[partition_id]/leader in ZK
 stop this commit thread
 stop the HW checkpoint thread
 }
 }

checkReassignedReplicas(pr: ProduceRequest, RAR: Set[Replica], ISR: Set[Replica])

{
 // see if all reassigned replicas have fully caught up and older replicas have stopped fetching, if so,
switch to those replicas

 // optimization, do the check periodically

 If (every replica in RAR has its leo >= pr.offset) {
 if(!sentCloseReplica.get) {
 oldReplicas = AR - RAR

 for(oldReplica <- oldReplicas) {
 if(r.broker_id != broker_id)
 sendStateChange(“close-replica”, oldReplica.broker_id, epoch)
 }
 sentCloseReplica.set(true)
 }else {
 // close replica is already sent. Wait until the replicas are closed or probably timeout and raise
error
 if(broker_id is in (AR - RAR) && (other replicas in (AR - RAR) are not in ISR anymore)) {
 // leader is not in the reassigned replicas list
 completePartitionReassignment(RAR, ISR, AR, true)
 sentCloseReplica.set(false)
 }
 else if(every replica in (AR-RAR) is not in ISR anymore) {
 completePartitionReassignment(RAR, ISR, AR, false)
 sentCloseReplica.set(false)
 }
 }

}

completePartitionsReassignment(RAR: Set[Replica], ISR: Set[Replica], AR: Set[Replica], stopCommitThread:
Boolean)
{
 //newly assigned replicas are in-sync, switch over to the new replicas
 //need (RAR + ISR) in case we fail right after here

 write (RAR + ISR) as the new ISR in ZK
 update /brokers/topics/[topic]/[partition_id]/replicas in ZK with the new replicas in RAR

 if(stopCommitThread || (broker_id is not preferred replica))
 {
 if(this broker_id is not in the new AR)
 sendStateChange(“close-replica”, broker_id, epoch)
 delete /brokers/partitions_reassigned/[topic]/[partition_id] in ZK
 //triggers leader election
 delete /brokers/topics/[topic]/[partition_id]/leader in ZK
 stop this commit thread
 }
}

Follower fetching from leader

A follower keeps sending ReplicaFetcherRequests to the leader. The process at the leader and the follower are described below -

ReplicaFetchReqeust {
 topic: String
 partition_id: Int
 replica_id: Int
 offset: Long
}

ReplicaFetchResponse {
 hw: Long // the offset of the last message committed at the leader
 messages: MessageSet // fetched messages
}

At the leader

replicaFetch (f: ReplicaFetchRequest) { // handler for ReplicaFetchRequest at leader
 leader = getLeaderReplica(f.topic, f.partition_id)

 if(leader == null) throw NotLeaderException
 response = new ReplicaFetcherResponse
 getReplica(f.topic, f.partition_id, f.replica_id).leo = f.offset
 response.messages = fetch messages starting from f.offset from leader.log
 response.hw = leader.hw
 send response back
}

At the follower

ReplicaFetcherThread for Replica r:

while(true) {
 send ReplicaFetchRequest to leader and get response:ReplicaFetcherResponse back
 append response.messages to r's log
 r.hw = response.hw
 advance offset in ReplicaFetchRequest
}

	Kafka replication detailed design V2

