
Consumer API changes
New consumer API

 /**
 * Create a list of MessageStreams for each topic.
 *
 * @param topicCountMap a map of (topic, #streams) pair
 * @param decoder Decoder to decode each Message to type T
 * @return a map of (topic, list of KafkaStream) pairs.
 * The number of items in the list is #streams. Each stream supports
 * an iterator over message/metadata pairs.
 */
 def createMessageStreams[T](topicCountMap: Map[String,Int],
 decoder: Decoder[T] = new DefaultDecoder)
 : Map[String,List[KafkaStream[T]]]

 /**
 * Create a list of message streams for all topics that match a given filter.
 *
 * @param topicFilter Either a Whitelist or Blacklist TopicFilter object.
 * @param numStreams Number of streams to return
 * @param decoder Decoder to decode each Message to type T
 * @return a list of KafkaStream each of which provides an
 * iterator over message/metadata pairs over allowed topics.
 */
 def createMessageStreamsByFilter[T](topicFilter: TopicFilter,
 numStreams: Int = 1,
 decoder: Decoder[T] = new DefaultDecoder)
 : Seq[KafkaStream[T]]

Questions/discussion

What is a ?TopicFilter

TopicFilter can be either a whitelist or a blacklist. e.g.,

Example of a whitelist : TopicFilter new Whitelist("white.*")
Example of a blacklist : TopicFilter new Blacklist("black.*")

Although Java regex allows you to specify anything with a single regex (i.e., you don't really need a blacklist option per se), negating a whitelist in Java
regex is clumsy. It is convenient to be able to easily specify a whitelist and blacklist. Although right now supports only one of whitelistTopicFilter
/blacklist in future we may want to support a chain of filters to do more elaborate topic selection.

What is a ?MessageAndMetadata

case class MessageAndMetadata[T](message: T, topic: String = "", offset: Long = -1L)

The 's iterator is a which is an iterator over objects.KafkaStream[T] ConsumerIterator[T] MessageAndMetadata[T]

Can we eliminate the need for two methods in the API? Also, providing a topic-count-map in the API createMessageStreams
is burdensome. Can we get rid of that?

If we don't support the one-shot approach of creating multiple streams for multiple topics, then the most obvious alternative is:

 def createMessageStreams[T](topic: String, numStreams: Int,
 decoder: Decoder[T] = new DefaultDecoder)
 : Seq[KafkaStream[T]]

Advantages

1.
2.

Simpler, more intuitive API which is consistent with the API as well.createMessageStreamsByFilter
It may be possible to combine the and calls into one API. This would need to createMessageStreams createMessageStreamsByFilter
be fleshed out in some detail, but we could have a higher-level class that can either be a static topic, or a . Another Topic TopicFilter
advantage of this is that the high-level class it could do things like validate topic names. However, the consumer code would need to Topic
explicitly call () or () but that does not seem so bad.new Topic(new Whitelist("white.*") new Topic("topicname")

Disadvantages

The above also reveals an advantage of creating multiple streams for multiple topics at one-shot . If you want to create multiple streams for
multiple topics, then you would need to make a call for each topic, which would trigger one rebalance for each topic. createMessageStreams
With the one-shot call (which receives atopic-count-map), only one rebalance (for all topics) will be required.
Not a disadvantage, but additional work: the consumer connector code is currently broken with respect to supporting multiple calls to createMess

 on the same connector object. For example, the is per connector object, and not per call. There are a bunch ageStreams consumerIdString
of other global variables that may need to become per-call instances. Anyway, the point is that we would need to completely fix that if we want to
deprecate the option to provide a topic-count-map.

Impact to clients

Client code will need to change, since the current pattern of:

for (message <- stream) {
 // process(message)
}

will change to:

for (msgAndMetadata <- stream) {
 // processMessage(msgAndMetadata.message)
 // can also access msgAndMetadata.offset, topic, etc. if appropriate
}

Existing API

 /**
 * Create a list of MessageStreams for each topic.
 *
 * @param topicCountMap a map of (topic, #streams) pair
 * @return a map of (topic, list of KafkaMessageStream) pair. The number of items in the
 * list is #streams. Each KafkaMessageStream supports an iterator of messages.
 */
 def createMessageStreams[T](topicCountMap: Map[String,Int],
 decoder: Decoder[T] = new DefaultDecoder)
 : Map[String,List[KafkaMessageStream[T]]]

References

https://issues.apache.org/jira/browse/KAFKA-249
Mailing list discussion

https://issues.apache.org/jira/browse/KAFKA-249
http://mail-archives.apache.org/mod_mbox/incubator-kafka-dev/201203.mbox/%3CCAAOfhrCNvyefLJNGXcBP9_HruzjYDGqzYDpikVagcRWqj_YgxA%40mail.gmail.com%3E

	Consumer API changes

