Consumer API changes

New consumer API

* Create a |list of MessageStreans for each topic.

*  @aramtopicCountMap a nmap of (topic, #streanms) pair
*  @aram decoder Decoder to decode each Message to type T
* @eturn a map of (topic, list of KafkaStream pairs.

* The nunber of items in the list is #streans. Each stream supports
* an iterator over nessage/netadata pairs.
*/

def createMessageStreans[ T] (topi cCount Map: Map[String,Int],
decoder: Decoder[T] = new Def aul t Decoder)
Map[ Stri ng, Li st[ Kaf kaStrean{ T] ] ]

* Create a list of message streans for all topics that match a given filter.

* @aramtopicFilter Either a Witelist or Blacklist TopicFilter object.
*  @aram nuntStreans Nunber of streanms to return

* @aram decoder Decoder to decode each Message to type T

* @eturn a list of KafkaStream each of which provides an

* iterator over nmessage/ netadata pairs over allowed topics.

def createMessageStreansByFilter[T] (topicFilter: TopicFilter,
nunStreans: Int = 1,
decoder: Decoder[T] = new Defaul t Decoder)
Seq[ Kaf kaSt reani T] ]

Questions/discussion

What is a Topi cFil ter?
Topi cFi | t er can be either a whitelist or a blacklist. e.g.,

® Example of a whitelist Topi cFi | ter: new Whitelist("white. *")
® Example of a blacklist Topi cFi | t er: new Bl ackl i st ("bl ack.*")

Although Java regex allows you to specify anything with a single regex (i.e., you don't really need a blacklist option per se), negating a whitelist in Java

regex is clumsy. It is convenient to be able to easily specify a whitelist and blacklist. Although right now Topi cFi | t er supports only one of whitelist
/blacklist in future we may want to support a chain of filters to do more elaborate topic selection.

What is a MessageAndMet adat a?

case class MessageAndMet adata[ T] (nmessage: T, topic: String = of fset: Long = -1L)

The Kaf kaSt r ean{ T] 's iterator is a Consuner | t er at or [ T] which is an iterator over MessageAndMet adat a[ T] objects.

Can we eliminate the need for two methods in the API? Also, providing a topic-count-map in the cr eat eMessageSt r eans API
is burdensome. Can we get rid of that?

If we don't support the one-shot approach of creating multiple streams for multiple topics, then the most obvious alternative is:

def createMessageStreans[T](topic: String, nunfStreans: Int,
decoder: Decoder[T] = new Def aul t Decoder)
Seq[ Kaf kaSt rean T] ]

Advantages



® Simpler, more intuitive API which is consistent with the cr eat eMessageSt r eansByFi | t er API as well.

® |t may be possible to combine the cr eat eMessageSt r eans and cr eat eMessageSt r eansByFi | t er calls into one API. This would need to
be fleshed out in some detail, but we could have a higher-level Topi ¢ class that can either be a static topic, or a Topi cFi | t er . Another
advantage of this is that the high-level Topi c class it could do things like validate topic names. However, the consumer code would need to
explicitly call (new Topi c(new Wi telist("white.*"))or(new Topi c("topi cnane")) but that does not seem so bad.

Disadvantages

®* The above also reveals an advantage of creating multiple streams for multiple topics at one-shot . If you want to create multiple streams for
multiple topics, then you would need to make a cr eat eMessageSt r eans call for each topic, which would trigger one rebalance for each topic.
With the one-shot call (which receives atopic-count-map), only one rebalance (for all topics) will be required.

® Not a disadvantage, but additional work: the consumer connector code is currently broken with respect to supporting multiple calls to cr eat eMess
ageSt r eans on the same connector object. For example, the consuner | dSt ri ng is per connector object, and not per call. There are a bunch
of other global variables that may need to become per-call instances. Anyway, the point is that we would need to completely fix that if we want to
deprecate the option to provide a topic-count-map.

Impact to clients

Client code will need to change, since the current pattern of:

for (message <- stream {
/1 process(nmessage)

}

will change to:

for (msgAndMet adata <- strean) {
/1 processMessage( nsgAndMet adat a. nessage)
/1 can al so access nmsgAndMet adat a. of fset, topic, etc. if appropriate

}

Existing API

* Create a list of MessageStreans for each topic.

*  @aramtopicCountMap a map of (topic, #streans) pair
* @eturn a map of (topic, list of KafkaMessageStrean) pair. The nunber of itenms in the
* list is #streans. Each Kaf kaMessageStream supports an iterator of nessages.

def createMessageStreans[ T] (topi cCount Map: Map[String,Int],
decoder: Decoder[T] = new Defaul t Decoder)
Map[ Stri ng, Li st [ Kaf kaMessageSt rean] T] 1]

References

1. https://issues.apache.org/jira/browse/KAFKA-249
2. Mailing list discussion


https://issues.apache.org/jira/browse/KAFKA-249
http://mail-archives.apache.org/mod_mbox/incubator-kafka-dev/201203.mbox/%3CCAAOfhrCNvyefLJNGXcBP9_HruzjYDGqzYDpikVagcRWqj_YgxA%40mail.gmail.com%3E

	Consumer API changes

