
Kafka mirroring (MirrorMaker)

How to set up a mirror
Import configuration parameters for the mirror maker

Whitelist or blacklist
Producer timeout
Producer retries
Number of producers
Number of consumption streams
Shallow iteration and producer compression (Kafka 0.7)
Consumer and source cluster socket buffer sizes

How to check whether a mirror is keeping up

Kafka's mirroring feature makes it possible to maintain a replica of an existing Kafka cluster. The following diagram shows how to use the tool MirrorMaker
to mirror a source Kafka cluster into a target (mirror) Kafka cluster. The tool uses a Kafka consumer to consume messages from the source cluster, and re-
publishes those messages to the local (target) cluster using an embedded Kafka producer.

There is also documentation on the MirrorMaker at .https://kafka.apache.org/documentation.html#basic_ops_mirror_maker

How to set up a mirror
Setting up a mirror is easy - simply start up the mirror-maker processes after bringing up the target cluster. At minimum, the mirror maker takes one or
more consumer configurations, a producer configuration and either a whitelist or a blacklist. You need to point the consumer to the source cluster's
ZooKeeper, and the producer to the mirror cluster's ZooKeeper (or use the parameter).broker.list

bin/kafka-mirror-maker.sh --consumer.config sourceCluster1Consumer.config --consumer.config
sourceCluster2Consumer.config --num.streams 2 --producer.config targetClusterProducer.config --whitelist=".*"

Import configuration parameters for the mirror maker

Whitelist or blacklist

The mirror-maker accepts exactly one of whitelist or blacklist. These are standard Java regex patterns, although comma (',') is interpreted as the regex-
choice symbol ('|') for convenience.

Producer timeout

In order to sustain a higher throughput, you would typically use an asynchronous embedded producer and it should be configured to be in blocking mode (i.
e.,). This recommendation is to ensure that messages will not be lost. Otherwise, the default enqueue timeout of the queue.enqueueTimeout.ms=-1
asynchronous producer is zero which means if the producer's internal queue is full, then messages will be dropped due to . A QueueFullExceptions
blocking producer however, will wait if the queue is full, and effectively throttle back the embedded consumer's consumption rate. You can enable trace
logging in the producer to observe the remaining queue size over time. If the producer's queue is consistently full, it indicates that the mirror-maker is bottle-
necked on re-publishing messages to the local (mirror) cluster and/or flushing messages to disk.

Producer retries

If you use in the producer configuration and point it to a hardware load-balancer, then you can configure the number of retry attempts on broker.list
producer failures. (The retry option only applies when you specify a load-balancer in the option since the broker is re-selected on retry only if you broker.list
use a hardware load-balancer.)

https://kafka.apache.org/documentation.html#basic_ops_mirror_maker

Number of producers

You can use the option to use a producer pool in the mirror maker to increase throughput. This helps because each producer's requests --num.producers
are effectively handled by a single thread on the receiving Kafka broker. i.e., even if you have multiple consumption streams (see next section), the
throughput can be bottle-necked at handling stage of the mirror maker's producer requests.

Number of consumption streams

Use the option to specify the number of mirror consumer threads to create. Note that if you start multiple mirror maker processes then you --num.streams
may want to look at the distribution of partitions on the source cluster. If the number of consumption streams is too high per mirror maker process, then
some of the mirroring threads will be idle by virtue of the consumer rebalancing algorithm (if they do not end up owning any partitions for consumption).

Shallow iteration and producer compression (Kafka 0.7)

(N/A for Kafka 0.8, see JIRA issue KAFKA-732)

Our recommendation is to enable shallow iteration in the mirror maker's consumer. This means that the mirror maker's consumer will not attempt to
decompress message-sets of compressed messages. It will simply re-publish these messages as is.

If you enable shallow iteration, you must disable compression in the mirror maker's producer, or message-sets can become double-
compressed.

Consumer and source cluster socket buffer sizes

Mirroring is often used in cross-DC scenarios, and there are a few configuration options that you may want to tune to help deal with inter-DC
communication latencies and performance bottlenecks on your specific hardware. In general, you should set a high value for the socket buffer size on the
mirror-maker's consumer configuration () and the source cluster's broker configuration (socket.send.buffer). Also, the mirror-maker socket.buffersize
consumer's fetch size () should be higher than the consumer's socket buffer size. Note that the socket buffer size configurations are a hint to the fetch.size
underlying platform's networking code. If you enable trace logging, you can check the actual receive buffer size and determine whether the setting in the
OS networking layer also needs to be adjusted.

How to check whether a mirror is keeping up
The consumer offset checker tool is useful to gauge how well your mirror is keeping up with the source cluster. Note that the argument should --zkconnect
point to the source cluster's ZooKeeper (DC1 in this scenario). Also, if the topic is not specified, then the tool prints information for all topics under the
given consumer group. For example:

bin/kafka-consumer-offset-checker.sh --group KafkaMirror --zkconnect dc1-zookeeper:2181 --topic test-topic
Group Topic Pid Offset logSize Lag Owner
KafkaMirror test-topic 0 5 5 0 none
KafkaMirror test-topic 1 3 4 1 none
KafkaMirror test-topic 2 6 9 3 none

	Kafka mirroring (MirrorMaker)

