
KIP-1010: Topic Partition Quota

Status
Motivation
Public Interfaces

Metrics
Quota Configuration
Default Quota Configuration

Proposed Changes
Quota Policy
Quota Distribution
Quota Actions
Metrics
Configuration Management
Dynamic Configuration
Partition Size per Request
Quota Management

Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: "Under Discussion"

Discussion thread: here

JIRA:

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
In , which introduced Kafka's network bandwidth quotas, the byte-rate threshold configurations are based on individual users and/or clients. This KIP-13
strategy, while effective in mitigating the impact of misbehaving clients on others within the same topic, introduces a trade-off in terms of quota distribution.

The current per-client quota method ensures that a single misbehaving client doesn't unintentionally affect multiple clients functioning as producers or
consumers within the same topic. However, this approach has limitations, particularly when multiple partitions of the same topic are located on the

. For example, consider a topic (T) with 6 partitions, and an total write throughput of 12MBps. Ideally, each partition should receive same broker expected
a 2Mbps quota, but the current implementation faces challenges. If a broker hosts 2 leader partitions for topic T, the collective throughput for that topic on
the broker is limited to 2MBps, rather than anticipated 4MBps.

blocked URL

Given that clients are often unaware of the partition distribution of topics, which can dynamically change with tools like Cruise Control, there is room for a
more . This KIP proposes an alternative implementation wherein network bandwidth quotas can consistent experience for producers and consumers
also be defined on a per-topic-partition basis. This would offer greater flexibility in aligning quotas with the specific characteristics of individual topic
partitions, potentially enhancing the overall control and predictability of Kafka's network bandwidth management.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

https://lists.apache.org/thread/0vkwdpfwnzn6d4h6yc33b7zhwpcw64bz
https://cwiki.apache.org/confluence/display/KAFKA/KIP-13+-+Quotas
https://salesforce.quip.com/-/blob/RWGAAAH3eQR/QrFZDvDTd17stGdqSAX3lg

Public Interfaces

Metrics

For the introduction of topic-partition quotas, we must now record the byte rate and throttle time for a particular topic-partition. To accommodate this, we
suggest extending the existing public interface by adding a new method for . This new method overload ClientQuotaCallback quotaMetricTags
includes an extra parameter for TopicPartition. In order to maintain backward compatibility with custom implementations of this interface, we propose that
the default implementation of this method should ignore the new parameter and simply call the original .quotaMetricTags

Quota Configuration

To support produce and consume quota values per topic, we propose adding two configurations to the Kafka client’s and . TopicConfig QuotaConfig
The first configuration enables the introduction of a new setting in the topic, while the second allows the utilization of that setting in quota management.
To align with the established topic configuration naming convention, we recommend using dot-separated names such as and producer.byte.rate con
sumer.byte.rate

Default Quota Configuration

In Kafka, default configurations are currently defined for user/client but not for topics. To align with the familiar pattern of falling back to default quota
values, we suggest introducing this feature to topic configuration. Implementing this involves making adjustments in , accommodating ConfigCommand <de

 in topic name validation, and making necessary updates in places like implementations.fault> AdminManager

Proposed Changes
Following the same pattern as KIP-13, we categorize the changes around Quota Policy, Distribution, Metrics, Quota Actions and Configuration
Management to highlight the differences.

Quota Policy

Similar to the original implementation, we propose to throttle based on the client-id. The primary distinction lies in our extended approach, where we
assess whether a request should be throttled based on the byte-rate associated with each topic-partition produced or consumed within that request. In
other words, alongside capturing the byte rate based on the client and user-id metrics in the client sensor, we now also register the byte rate for each
specified topic-partition in the request. Regardless of whether the topic-partition quota is enabled or not, this metric also aids in monitoring traffic per
partition and may have additional use cases.

Additionally, we suggest setting default quota values for topic-partitions and providing the option to override them for specific topics, similar to the existing
user/client quota system.

Quota Distribution

Following the current method, Kafka sets quotas per broker, avoiding the complexities of sharing quota usage across all brokers. Our extended approach
maintains this principle. The only adjustment is that, by specifying quotas with more detail for topic-partitions, we aim to prevent early throttling issues
when multiple partitions share the same broker.

Quota Actions

We're not suggesting any alterations to the current approach. The only small adjustment is the necessity to offer more detailed information about the size
of produced/requested topic partitions for quota management.

Metrics

Following the original implementation, we are using the standard Kafka metrics mechanism with sensors. The only change involves introducing new metric
tags to record the produce/consume byte rate, including topic-name and partition-id. A positive outcome of this modification is the ability to monitor traffic
per topic per partition in clusters with the new mechanism enabled.

Configuration Management

Even though we're implementing throttling based on individual partitions in a topic, we assume that all partitions in that topic share the same quotas for
both production and consumption. To manage this, we suggest adding new configurations—like and —producer.byte.rate consumer.byte.rate
specifically for quotas.

Just like other topic settings, you can easily adjust these configurations using , and it works seamlessly with both Zookeeper and Kraft kafka-config.sh
implementations.

For default topic-partition quotas, we propose using as a special topic name. This makes it easy to set up quotas for , <default> producer.byte.rate
, and potentially other default topic settings in the future.consumer.byte.rate

1.

2.

Dynamic Configuration

Similar to the dynamic user/client quota configuration, we aim to make topic quota configuration dynamic as well. To achieve this, the QuotaManager
needs to be notified of any changes. This necessitates adjustments in the class.ConfigHandler

Partition Size per Request

To accurately measure the size of the topic-partition per request, we propose making the in public and partitionSizes ProduceRequest
implementing a corresponding method in the class, utilizing . These methods can then be employed in FetchResponse MessageSizeAccumulator Kaf

 to calculate the individual partition size for both produce and consume requests, subsequently providing this information to quota management kaApis
methods like and .maybeRecordAndGetThrottleTimeMs getMaxValueInQuotaWindow

Quota Management

To dynamically support both user/client quotas and topic/partition quotas, we suggest extending the to track overall request size ClientQuotaManager
and record it per user/client (as in the current quota implementation), as well as individual topic-partition size recorded per topic per partition. This
approach allows the quota manager to make decisions on request throttling based on whether a user/client quota, a topic-partition quota, or both have
been reached.

Compatibility, Deprecation, and Migration Plan
The introduced feature maintains backward compatibility by extending the existing implementation without removing user/client quota behavior or altering
any current configurations. The only major change is the collected metrics for the topic-partition byte-rate in produce and consume requests. If there are
concerns regarding heap size, we can potentially introduce a feature flag to halt the collection of these events.
For migration, users can simply configure the topic with the new quota settings and utilize the feature independently or in conjunction with user/client
quotas.

Test Plan
Integration and unit tests would cover most of the functionalities.

For performance test, we should be able to use the current numbers as the baseline and compare with the topic-partition quota enabled.

Rejected Alternatives
No Default Config for Topic-Partition Quota: While this option would simplify implementation, it would require defining quotas for every new topic
or providing unlimited quotas (assuming user/client quotas are not used).
Static per-broker limit: Although this will address the broker limit, it does not fit the multi-tenant clusters and the noisy-neighbor problem.

	KIP-1010: Topic Partition Quota

