
Java client Consumer timeouts

Overview
Interpretation of Timeout Values

Types of Timeouts
API Timeouts
Network I/O Timeouts
Relationship Between API Timeouts and Network I/O Timeouts

Timer

Overview
Many of the APIs provide a means for users to express that an operation should adhere to a timeout. This is achieved by including a Consumer Duration
object as one of the API method parameters.

Take as an example and :commitSync() commitSync(Duration timeout)

public void commitSync()

public void commitSync(Duration timeout);

Not all of the APIs support timeouts, but of those that do, the timeout is either or . required optional

The following APIs a timeout:Consumer require

clientInstanceId
poll

The following APIs provide overloaded versions that allow the user to pass in an timeout:Consumer optional

beginningOffsets
close
commitSync
committed
endOffsets
listTopics
offsetsForTimes
partitionsFor
position

Consumer.poll() - user provide timeout

Coordinator rediscovery backoff: retry.backoff.ms

Coordinator discovery timeout: Currently uses the user-provided timeout in the consumer.poll(). Maybe we should use . And re-attempt request.timeout.ms
in the next loop if failed

CommitOffsetSync: user provided

Rebalance State Timeout: maybe using the request timeout

Is there a better way to configure session interval and heartbeat interval?

Interpretation of Timeout Values

A precise definition of the timeout policy of the existing is undefined. Consumer The main clues as to the intended behavior is based on the API-level
documentation as well as the source code itself. The documentation can be a little vague and the source code is not consistent throughout the different

Also, Kafka does not provide any real time guarantees, so the level of precision in describing the timeouts is rough. API implementations. This leaves us in
the situation in which there may be more than one way to interpret how a timeout is implemented.

Types of Timeouts
There is no one of a timeout; there are many, which can cause confusion. We will focus on just two types of timeouts: API timeouts and network I/O type
timeouts.

API Timeouts

https://kafka.apache.org/36/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#commitSync()
https://kafka.apache.org/36/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#close(java.time.Duration)
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_retry.backoff.ms
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_request.timeout.ms

As an example, let's imagine a user has developed their Kafka application such that a value of is passed in to the method. Intuitively, 10,000 poll()
what does the user expect the behavior to be? The user would expect that client would do its best to return as many records as it can within that limit of 10
seconds. The application would invoke the Kafka client, and for up to 10 seconds the application may be waiting for a response.

In this document, we refer to the timeout that the user supplies to an API as the . This is a timeout that covers the entirety time spent on the API timeout
Consumer API call. The user should be free to treat the API timeout like a black box; it is the upper-bound on the length of time spent executing that API
call. When a timeout-based API is invoked, that timeout value provides an upper-bound for the aggregation of the entire set of operations Consumer
required by that API call. That is, the length of time for all the constituent operations of that API call must be less than or equal to the timeout provided by
the user.

In the overview, we stated that the APIs provides overloaded versions of many methods with an timeout. Say the user calls Consumer optional commitSyn
 (i.e. the version of the commit method that does not include a timeout)—is it then assumed that the method will run forever? The documentation for c() de

fault.api.timeout.ms states this about the configuration option:

Specifies the timeout (in milliseconds) for client APIs. This configuration is used as the default timeout for all client operations that
do not specify a parameter. timeout

So the implementation of method such as essentially just calls its sibling version () like this:commitSync() commitSync(Duration timeout)

public void commitSync() {
 Duration timeout = Duration.ofMillis(defaultApiTimeoutMs);
 commitSync(timeout);
}

Network I/O Timeouts

In practice, timeouts are largely used to time-bound I/O. In the case of a Kafka client, there is no disk I/O, so we can focus our attention solely on network I
/O. The communication between the client and brokers over the network is going to constitute the bulk of the time for many operations. Allowing the user to
provide an upper bound on the total time of these operations provides some protection against .network issues

For API calls that require network I/O operations, the will issue network requests to the Kafka cluster. Each of those distinct network requests Consumer
include their own timeout value, which we refer to as the . Network I/O timeouts are provided directly as part of the API. network I/O timeout not Consumer
Instead, they are supplied to the client at initialization time via the . configuration optionrequest.timeout.ms

Relationship Between API Timeouts and Network I/O Timeouts

Let's look at a couple of examples to highlight the difference between these two timeouts.

In our first diagram, the user has invoked a API call with a very generous timeout:Consumer

https://kafka.apache.org/documentation/#consumerconfigs_default.api.timeout.ms
https://kafka.apache.org/documentation/#consumerconfigs_default.api.timeout.ms
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://kafka.apache.org/documentation/#consumerconfigs_request.timeout.ms

In this first example, the API call needs to make a network I/O request to the Kafka cluster. Unfortunately, from the client's perspective, something is wrong
with the network and/or the broker because it did not receive a response within the configured network I/O timeout. Because there was sufficient time left
within the API timeout, the client was able to retry the network request until it succeeded on the third attempt. This retry functionality is implemented within
each implementation as not all requests should be retried in all cases.RequestManager

In our second diagram, the user has invoked a API call with a much shorter timeout: Consumer

As in the first example, when the client attempts to make a network I/O request to the Kafka cluster, it is not receiving the response within the configured
network I/O timeout. Because there was sufficient time left within the API timeout, the client was able to retry the network request. However, notice the
third network I/O timeout is much shorter than the previous two. Why is that? As mentioned above, normally the network I/O timeout would be determined
by the configuration. However, in order to ensure the client abides by the overall , we must reduce the network I/O request.timeout.ms API timeout
timeout of the third request. Thus we must always make sure

int requestTimeoutMs = Math.min(apiTimeoutRemainingMs, requestTimeoutMs);

Timer
When a user provides a timeout value to a API, a object is immediately created to track the elapsed/remaining time for processing. Consumer Timer
While a object provides a fixed value of the overall timeout, the tracks how much time remains since it was first created. At certain Duration Timer
points during processing, the API is invoked to determine the elapsed/remaining time for processing.Timer.update()

The logic in the class does not in itself magically enforce any timeouts. The code that uses the object must interact with it explicitly to update Timer Timer
it () and query it (, , and not) to determine the remaining value of the timeout.update() remainingMs() isExpired() Expired()

The class is not designed to be thread-safe. Although it might be useful to reuse the same object in both the application and network I/O Timer Timer
threads, this is currently ill-advised due to the lack of thread safety. This will likely force us to have two separate instances (one for each thread), Timer
which is less than ideal

	Java client Consumer timeouts

