
KIP-1018: Introduce max remote fetch timeout config for
DelayedRemoteFetch requests

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: "Under Discussion"

Discussion thread: here

JIRA: KAFKA-15776

Motivation
When reading from remote storage, we are reusing the fetch.max.wait.ms config as a delay timeout for . DelayedRemoteFetchPurgatory fetch.max.wait.ms
purpose is to wait for the given amount of time when there is no local data available to serve the FETCH request.

Using the same timeout in the can confuse the user on how to configure the optimal value for each purpose. Moreover, the DelayedRemoteFetchPurgatory
config is of importance and most of the users won't configure it and use the default value of 500 ms. Having the delay timeout of 500 ms in LOW
DelayedRemoteFetchPurgatory can lead to higher number of expired delayed remote fetch requests when the remote storage have any degradation.

Public Interfaces
A new dynamic broker configuration: will be added and the delayed remote fetch purgatory will wait up to this timeout to fetch.remote.max.wait.ms
fetch the data from the remote storage.

The consumer config document will be updated to denote that it applies only to the local storage:fetch.max.wait.ms

fetch.max.wait.ms

The maximum amount of time the server will block before answering the fetch request when it is reading near to
the tail of the partition (high-watermark) and there isn't sufficient data to immediately satisfy the
requirement given by fetch.min.bytes

Proposed Changes
Remote storage read latencies are non-deterministic. Suppose the user configures 20 remote-log-reader threads, and it takes 100 ms to serve one
request. When a backfill job runs and reads data from the head of the log for multiple partitions (let's say 1000), the remote-fetch requests get queued,
potentially exceeding the default timeout of 500 ms. Additionally, the time taken to serve the P99 remote storage fetch requests can extend into seconds.
We propose introducing a new timeout parameter, , to offer users the option to configure the timeout based on their fetch.remote.max.wait.ms
workload.

Under the current behavior, when the remote-fetch request times out, the client receives an empty response and retries by sending the FETCH request for
the same fetch-offset. This process adds further pressure to the remote storage, as it involves fetching the same data and interrupting the thread before
completion.

:fetch.remote.max.wait.ms

This parameter represents the maximum time the server will block before responding to the remote fetch request. Note that this timeout should be set to a
value less than ; otherwise, the requests will time out on the client side. The default value is configured to be 500 ms.request.timeout.ms

Setting the default value to 500 ms ensures that the client will always receive a response within 500 ms to prevent any surprises on the client side. It's
important to note that there is no guarantee that the FETCH request will always be served within 500 ms. The time taken to serve the FETCH request can
surpass the due to factors such as a slow hard disk, sector errors in the disk, and so on.fetch.max.wait.ms

Why does the configuration need to be dynamic?

#
https://lists.apache.org/thread/9x21hzpxzmrt7xo4vozl17d70fkg3chk
https://issues.apache.org/jira/browse/KAFKA-15776
https://kafka.apache.org/documentation/#consumerconfigs_fetch.max.wait.ms
https://github.com/apache/kafka/blob/trunk/core/src/main/scala/kafka/server/DelayedRemoteFetch.scala#L41
https://kafka.apache.org/documentation/#consumerconfigs_fetch.max.wait.ms
https://github.com/apache/kafka/blob/trunk/core/src/main/scala/kafka/server/DelayedRemoteFetch.scala#L41
http://fetch.remote.max.wait.ms
http://fetch.remote.max.wait.ms
http://request.timeout.ms
http://fetch.max.wait.ms

1.

2.

3.

By maintaining the flexibility to update this configuration dynamically, operators have more control over when to increase the timeout in case of any remote
storage degradation. If there is enough remote data () to respond, the remote-fetch request will be returned immediately.max.partition.fetch.bytes

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users?
No, there is no impact to the existing users as we are keeping the maintaining the same timeout
If we are changing behavior how will we phase out the older behavior? No
If we need special migration tools, describe them here. No
When will we remove the existing behavior?

Test Plan
The changes are covered with the existing unit and integration tests.

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

The consumer can update the existing config to extend the timeout. This config is used when there is no enough local fetch.max.wait.ms
data to respond. We should have a separate config for each use-case.
Make the as a consumer config instead of broker config, the tiered storage () is designed such that the fetch.remote.max.wait.ms KIP-405
clients are agnostic whether they are reading from broker's local disk (or) remote storage and it's not possible to support the older clients.
Instead of fixed timeout, we could consider having a backoff configs and increase it up to the broker request timeout. Since, this timeout is
applicable for all the FETCH requests and we don't know when to revert it back to the old/default value, maintaining this config as dynamic to give
more control to the operator.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage

	KIP-1018: Introduce max remote fetch timeout config for DelayedRemoteFetch requests

