
Setting Up HiveServer2
HiveServer2

HiveServer2
How to Configure

Configuration Properties in the hive-site.xml File
Running in HTTP Mode

Cookie Based Authentication
Optional Global Init File
Logging Configuration

How to Start
Usage Message

Authentication/Security Configuration
Configuration
Impersonation
Integrity/Confidentiality Protection
SSL Encryption

Setting up SSL with self-signed certificates
Selectively disabling SSL protocol versions

Pluggable Authentication Modules (PAM)
Setting up HiveServer2 job credential provider

Scratch Directory Management
Configuration Properties
ClearDanglingScratchDir Tool

Web UI for HiveServer2
Python Client Driver
Ruby Client Driver

HiveServer2 (HS2) is a server interface that enables remote clients to execute queries against Hive and retrieve the results (a more detailed intro). here
The current implementation, based on Thrift RPC, is an improved version of and supports multi-client concurrency and authentication. It is HiveServer
designed to provide better support for open API clients like JDBC and ODBC.

The Thrift interface definition language (IDL) for HiveServer2 is available at .https://github.com/apache/hive/blob/trunk/service/if/TCLIService.thrift
Thrift documentation is available at .http://thrift.apache.org/docs/

This document describes how to set up the server. How to use a client with this server is described in the .HiveServer2 Clients document

How to Configure

Configuration Properties in the Filehive-site.xml

hive.server2.thrift.min.worker.threads – Minimum number of worker threads, default .5

hive.server2.thrift.max.worker.threads – Maximum number of worker threads, default .500

hive.server2.thrift.port – TCP port number to listen on, default .10000

hive.server2.thrift.bind.host – TCP interface to bind to.

See for additional properties that can be set for HiveServer2.HiveServer2 in the Configuration Properties document

Optional Environment Settings

HIVE_SERVER2_THRIFT_BIND_HOST – Optional TCP host interface to bind to. Overrides the configuration file setting.
HIVE_SERVER2_THRIFT_PORT – Optional TCP port number to listen on, default 10000. Overrides the configuration file setting.

Running in HTTP Mode

HiveServer2 provides support for sending Thrift RPC messages over HTTP transport (Hive 0.13 onward, see). This is particularly useful to HIVE-4752
support a proxying intermediary between the client and the server (for example, for load balancing or security reasons). Currently, you can run
HiveServer2 in either TCP mode or the HTTP mode, but not in both. For the corresponding JDBC URL check this link: HiveServer2 Clients -- JDBC

. Use the following settings to enable and configure HTTP mode:Connection URLs

Setting Default Description

Version

Introduced in Hive version 0.11. See .HIVE-2935

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Overview
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Overview
https://cwiki-test.apache.org/confluence/display/Hive/HiveServer
https://github.com/apache/hive/blob/trunk/service/if/TCLIService.thrift
http://thrift.apache.org/docs/
https://cwiki-test.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-HiveServer2
https://issues.apache.org/jira/browse/HIVE-4752
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-JDBC
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-JDBC
https://issues.apache.org/jira/browse/HIVE-2935

hive.server2.transport.mode binary Set to http to enable HTTP transport mode

hive.server2.thrift.http.port 10001 HTTP port number to listen on

hive.server2.thrift.http.max.worker.threads 500 Maximum worker threads in the server pool

hive.server2.thrift.http.min.worker.threads 5 Minimum worker threads in the server pool

hive.server2.thrift.http.path cliservice The service endpoint

Cookie Based Authentication

HIVE-9709 and introduced cookie based authentication for HiveServer2 in HTTP mode. The HiveServer2 parameters (hive.server2.thrift.HIVE-9710
http.cookie.*) associated with this change can be found .here

Optional Global Init File

A global init file can be placed in the configured location (Hive 0.14 onward, see , , and hive.server2.global.init.file.location HIVE-5160 HIVE-7497 HIVE-8138
). This can be either the path to the init file itself, or a directory where an init file named ".hiverc" is expected.

The init file lists a set of commands that will run for users of this HiveServer2 instance, such as register a standard set of jars and functions.

Logging Configuration

HiveServer2 operation logs are available for Beeline clients (Hive 0.14 onward). These parameters configure logging:

hive.server2.logging.operation.enabled
hive.server2.logging.operation.log.location
hive.server2.logging.operation.verbose (Hive 0.14 to 1.1)
hive.server2.logging.operation.level (Hive 1.2 onward)

How to Start

$HIVE_HOME/bin/hiveserver2

OR

$HIVE_HOME/bin/hive --service hiveserver2

Usage Message

The or option displays a usage message, for example:-H --help

$HIVE_HOME/bin/hive --service hiveserver2 -H
Starting HiveServer2
usage: hiveserver2
 -H,--help Print help information
 --hiveconf <property=value> Use value for given property

Authentication/Security Configuration

HiveServer2 supports Anonymous (no authentication) with and without SASL, Kerberos (GSSAPI), pass through LDAP, Pluggable Custom Authentication
and Pluggable Authentication Modules (PAM, supported Hive 0.13 onwards).

Configuration

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.transport.mode
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.thrift.http.port
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.thrift.http.max.worker.threads
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.thrift.http.min.worker.threads
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.thrift.http.path
https://issues.apache.org/jira/browse/HIVE-9709
https://issues.apache.org/jira/browse/HIVE-9710
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.thrift.http.cookie.auth.enabled
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.global.init.file.location
https://issues.apache.org/jira/browse/HIVE-5160
https://issues.apache.org/jira/browse/HIVE-7497
https://issues.apache.org/jira/browse/HIVE-8138
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.logging.operation.enabled
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.logging.operation.log.location
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.logging.operation.verbose
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.logging.operation.level

1.

2.

Authentication mode:

hive.server2.authentication – Authentication mode, default NONE. Options are NONE (uses plain SASL), NOSASL, KERBEROS, LDAP, PAM
and CUSTOM.

Set following for KERBEROS mode:

hive.server2.authentication.kerberos.principal – Kerberos principal for server.

hive.server2.authentication.kerberos.keytab – Keytab for server principal.

Set following for LDAP mode:

hive.server2.authentication.ldap.url – LDAP URL (for example, ldap://hostname.com:389).

hive.server2.authentication.ldap.baseDN – LDAP base DN. (Optional for AD.)

hive.server2.authentication.ldap.Domain – LDAP domain. (Hive 0.12.0 and later.)

See User and Group Filter Support with LDAP Atn Provider in HiveServer2 for other LDAP configuration parameters in Hive 1.3.0 and later.

Set following for mode:CUSTOM

hive.server2.custom.authentication.class – Custom authentication class that implements the org.apache.hive.service.auth.
 interface.PasswdAuthenticationProvider

For PAM mode, see details in below.section on PAM

Impersonation

By default HiveServer2 performs the query processing as the user who submitted the query. But if the following parameter is set to , the query will run false
as the user that the process runs as.hiveserver2

hive.server2.enable.doAs – Impersonate the connected user, default .true

To prevent memory leaks in unsecure mode, disable file system caches by setting the following parameters to :true (see)HIVE-4501

fs.hdfs.impl.disable.cache – Disable HDFS filesystem cache, default false.

fs.file.impl.disable.cache – Disable local filesystem cache, default false.

Integrity/Confidentiality Protection

Integrity protection and confidentiality protection (beyond just the default of authentication) for communication between the Hive JDBC driver and
HiveServer2 are enabled (Hive 0.12 onward, see). You can use the property to configure this.HIVE-4911 SASL QOP

This is only when Kerberos is used for the HS2 client (JDBC/ODBC application) authentication with HiveServer2.
hive.server2.thrift.sasl.qop in has to be set to one of the valid values ('auth', 'auth-int' or 'auth-conf').hive-site.xml QOP

SSL Encryption

Support is provided for SSL encryption (Hive 0.13 onward, see). To enable, set the following configurations in :HIVE-5351 hive-site.xml

hive.server2.use.SSL – Set this to .true

hive.server2.keystore.path – Set this to your keystore path.

hive.server2.keystore.password – Set this to your keystore password.

Setting up SSL with self-signed certificates

Use the following steps to create and verify self-signed SSL certificates for use with HiveServer2:

Create the self signed certificate and add it to a keystore file using: keytool -genkey -alias example.com -keyalg RSA -keystore keystore.jks -
keysize 2048 Ensure the name used in the self signed certificate matches the hostname where HiveServer2 will run.

Note

When hive.server2.transport.mode is binary and hive.server2.authentication is KERBEROS, SSL encryption did not work until Hive 2.0. Set hive.
server2.thrift.sasl.qop to auth-conf to enable encryption. See for details.HIVE-14019

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.authentication.ldap.url
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.authentication.ldap.baseDN
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.server2.authentication.ldap.Domain
https://cwiki-test.apache.org/confluence/display/Hive/User+and+Group+Filter+Support+with+LDAP+Atn+Provider+in+HiveServer2
https://issues.apache.org/jira/browse/HIVE-4501
https://issues.apache.org/jira/browse/HIVE-4911
http://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
http://docs.oracle.com/javase/7/docs/api/javax/security/sasl/Sasl.html#QOP
http://docs.oracle.com/javase/7/docs/api/javax/security/sasl/Sasl.html#QOP
https://issues.apache.org/jira/browse/HIVE-5351
https://issues.apache.org/jira/browse/HIVE-14019

2.

3.
4.

5.
6.

1.
2.

3.

1.

2.
3.

4.

5.

List the keystore entries to verify that the certificate was added. Note that a keystore can contain multiple such certificates: keytool -list -keystore
keystore.jks
Export this certificate from keystore.jks to a certificate file: keytool -export -alias example.com -file example.com.crt -keystore keystore.jks
Add this certificate to the client's truststore to establish trust: keytool -import -trustcacerts -alias example.com -file example.com.crt -keystore
truststore.jks
Verify that the certificate exists in truststore.jks: keytool -list -keystore truststore.jks
Then start HiveServer2, and try to connect with beeline using: jdbc:hive2://<host>:<port>/<database>;ssl=true;sslTrustStore=<path-to-truststore>;
trustStorePassword=<truststore-password>

Selectively disabling SSL protocol versions

To disable specific SSL protocol versions, use the following steps:

Run openssl ciphers -v (or the corresponding command if not using openssl) to view all protocol versions.
In addition to 1, an additional step of going over the HiveServer2 logs may be required to see all the protocols that the node running HiveServer2
is supporting. For that, search for "SSL Server Socket Enabled Protocols:" in the HiveServer2 log file.
Add all the SSL protocols that need to be disabled to hive.ssl.protocol.blacklist. Ensure that the property in hiveserver2-site.xml does not override
that in hive-site.xml.

Pluggable Authentication Modules (PAM)

Support is provided for PAM (Hive 0.13 onward, see). To configure PAM:HIVE-6466

Download the native libraryJPAM for the relevant architecture.
Unzip and copy libjpam.so to a directory (<libjmap-directory>) on the system.
Add the directory to the LD_LIBRARY_PATH environment variable like so: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<libjmap-

 directory>
For some PAM modules, you'll have to ensure that your and files are readable by the user running the /etc/shadow /etc/login.defs
HiveServer2 process.

Finally, set the following configurations in :hive-site.xml

hive.server2.authentication – Set this to .PAM

hive.server2.authentication.pam.services – Set this to a list of comma-separated PAM services that will be used. Note that a file with the same name as
.the PAM service must exist in /etc/pam.d

Setting up HiveServer2 job credential provider

Starting Hive 2.2.0 onwards (see) Hiveserver2 supports job specific hadoop credential provider for MR and Spark jobs. When using encrypted HIVE-14822
passwords via the Hadoop Credential Provider, HiveServer2 needs to forward enough information to the job configuration so that jobs launched across
cluster can read those secrets. Additionally, HiveServer2 may have secrets that the job should not have such as the Hive Metastore database password. If
your job needs to access such secrets, like S3 credentials, then you can configure them using the configuration steps below:

Create a job-specific keystore using Hadoop Credential Provider API at a secure location in HDFS. This keystore should contain the encrypted key
/value pairs of the configurations needed by jobs. Eg: in case of S3 credentials the keystore should contain fs.s3a.secret.key and fs.s3a.access.
key with their corresponding values.
The password to decrypt the keystore should be set as a HiveServer2 environment variable called HIVE_JOB_CREDSTORE_PASSWORD
Set hive.server2.job.credential.provider.path to URL pointing to the type and location of keystore created in (1) above. If there is no job-specific
keystore, HiveServer2 will use the one set using hadoop.credential.provider.path in core-site.xml if available.
If the password using environment variable set in step 2 is not provided, HiveServer2 will use HADOOP_CREDSTORE_PASSWORD
environment variable if available.
HiveServer2 will now modify the job configuration of the jobs launched using MR or Spark execution engines to include the job credential provider
so that job tasks can access the encrypted keystore with the secrets.

hive.server2.job.credential.provider.path – Set this to your job-specific hadoop credential provider. Eg: jceks://hdfs/user/hive/secret/jobcreds.jceks.

HIVE_JOB_CREDSTORE_PASSWORD – Set this HiveServer2 environment variable to your job specific Hadoop credential provider password set
above.

Scratch Directory Management

HiveServer2 allows the configuration of various aspects of scratch directories, which are used by Hive to store temporary output and plans.

Warning

JPAM library that is used to provide the PAM authentication mode can cause HiveServer2 to go down if a user's password has expired. This
happens because of segfault/core dumps from native code invoked by JPAM. Some users have also reported crashes during logins in other
cases as well. Use of LDAP or KERBEROS is recommended.

https://issues.apache.org/jira/browse/HIVE-6466
http://sourceforge.net/projects/jpam/files/jpam/jpam-1.1/
https://issues.apache.org/jira/browse/HIVE-14822
http://jpam.sourceforge.net/

Configuration Properties

The following are the properties that can be configured related to scratch directories:

hive.scratchdir.lock
hive.exec.scratchdir
hive.scratch.dir.permission
hive.start.cleanup.scratchdir

ClearDanglingScratchDir Tool

The tool can be run to clean up any dangling scratch directories that might be left over from improper shutdowns of Hive, such cleardanglingscratchdir
as when a virtual machine restarts and leaves no chance for Hive to run the shutdown hook.

hive --service cleardanglingscratchdir [-r] [-v] [-s scratchdir]
 -r dry-run mode, which produces a list on console
 -v verbose mode, which prints extra debugging information
 -s if you are using non-standard scratch directory

The tool tests if a scratch directory is in use, and if not, will remove it. This relies on HDFS write locks to detect if a scratch directory is in use. An HDFS
client opens an HDFS file () for writing and only closes it at the time that the session is closed. will $scratchdir/inuse.lck cleardanglingscratchdir
try to open for writing to test if the corresponding HiveCli/HiveServer2 is still running. If the lock is in use, the scratch directory $scratchdir/inuse.lck
will not be cleared. If the lock is available, the scratch directory will be cleared. Note that it might take NameNode up to 10 minutes to reclaim the lease on
scratch file locks from a dead HiveCli/HiveServer2, at which point will be able to remove it if run againcleardanglingscratchdir .

Web UI for HiveServer2

A Web User Interface (UI) for HiveServer2 provides configuration, logging, metrics and active session information. The Web UI is available at port 10002
(127.0.0.1:10002) by default.

 for the Web UI can be , including Configuration properties customized in hive-site.xml hive.server2.webui.host, hive.server2.webui.port, hive.
, and others.server2.webui.max.threads

 can by viewed by using the "Metrics Dump" tab.Hive Metrics
can be viewed by using the "Local logs" tab. Logs

The interface is currently under development with .HIVE-12338

Version

Introduced in Hive 2.0.0. See and its sub-tasks.HIVE-12338

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.scratchdir.lock
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.scratchdir
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.scratch.dir.permission
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.start.cleanup.scratchdir
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-HiveServer2WebUI
https://cwiki-test.apache.org/confluence/display/Hive/AdminManual+Configuration#AdminManualConfiguration-hive-site.xmlandhive-default.xml.template
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Metrics
https://cwiki-test.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-HiveLogging
https://cwiki-test.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-HiveLogging
https://issues.apache.org/jira/browse/HIVE-12338
https://issues.apache.org/jira/browse/HIVE-12338

Python Client Driver
A Python client driver for HiveServer2 is available at (thanks, Brad). It includes all the required packages such as https://github.com/BradRuderman/pyhs2
SASL and Thrift wrappers.

The driver has been certified for use with Python 2.6 and newer.

To use the driver:pyhs2

pip install pyhs2

and then:

import pyhs2

with pyhs2.connect(host='localhost',
 port=10000,
 authMechanism="PLAIN",
 user='root',
 password='test',
 database='default') as conn:
 with conn.cursor() as cur:
 #Show databases
 print cur.getDatabases()

 #Execute query
 cur.execute("select * from table")

 #Return column info from query
 print cur.getSchema()

 #Fetch table results
 for i in cur.fetch():
 print i

https://github.com/BradRuderman/pyhs2
https://github.com/BradRuderman/pyhs2

You can discuss this driver on the .user@hive.apache.org mailing list

Ruby Client Driver

A Ruby client driver is available on github at .https://github.com/forward3d/rbhive

http://mail-archives.apache.org/mod_mbox/hive-user/201310.mbox/%3cCANFGO9pjHCGYHvT00kmU+5RT6+jE5uz=nZeVz7Q2ShF0Huojxw@mail.gmail.com%3e
https://github.com/forward3d/rbhive

	Setting Up HiveServer2

