
LanguageManual ORC
ORC Files

ORC Files
ORC File Format

File Structure
Stripe Structure

HiveQL Syntax
Serialization and Compression

Integer Column Serialization
String Column Serialization
Compression

ORC File Dump Utility
ORC Configuration Parameters

ORC Format Specification

ORC File Format

The () file format provides a highly efficient way to store Hive data. It was designed to overcome limitations of the other Optimized Row Columnar ORC
Hive file formats. Using ORC files improves performance when Hive is reading, writing, and processing data.

Compared with RCFile format, for example, ORC file format has many advantages such as:

a single file as the output of each task, which reduces the NameNode's load
Hive type support including datetime, decimal, and the complex types (struct, list, map, and union)
light-weight indexes stored within the file

skip row groups that don't pass predicate filtering
seek to a given row

block-mode compression based on data type
run-length encoding for integer columns
dictionary encoding for string columns

concurrent reads of the same file using separate RecordReaders
ability to split files without scanning for markers
bound the amount of memory needed for reading or writing
metadata stored using Protocol Buffers, which allows addition and removal of fields

File Structure

An ORC file contains groups of row data called , along with auxiliary information in a . At the end of the file a holds stripes file footer postscript
compression parameters and the size of the compressed footer.

The default stripe size is 250 MB. Large stripe sizes enable large, efficient reads from HDFS.

The file footer contains a list of stripes in the file, the number of rows per stripe, and each column's data type. It also contains column-level aggregates
count, min, max, and sum.

This diagram illustrates the ORC file structure:

Version

Introduced in Hive version .0.11.0

https://orc.apache.org
https://issues.apache.org/jira/browse/HIVE-3874

Stripe Structure

As shown in the diagram, each stripe in an ORC file holds index data, row data, and a stripe footer.

The contains a directory of stream locations. is used in table scans.stripe footer Row data

Index data includes min and max values for each column and the row positions within each column. (A bit field or bloom filter could also be included.) Row
index entries provide offsets that enable seeking to the right compression block and byte within a decompressed block. Note that ORC indexes are used
only for the selection of stripes and row groups and not for answering queries.

Having relatively frequent row index entries enables row-skipping within a stripe for rapid reads, despite large stripe sizes. By default every 10,000 rows
can be skipped.

With the ability to skip large sets of rows based on filter predicates, you can sort a table on its secondary keys to achieve a big reduction in execution time.
For example, if the primary partition is transaction date, the table can be sorted on state, zip code, and last name. Then looking for records in one state will
skip the records of all other states.

A complete specification of the format is given in the .ORC specification

HiveQL Syntax

File formats are specified at the table (or partition) level. You can specify the ORC file format with HiveQL statements such as these:

CREATE TABLE ... STORED AS ORC
ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT ORC
SET hive.default.fileformat=Orc

1.
2.

The parameters are all placed in the TBLPROPERTIES (see). They are:Create Table

Key Default Notes

orc.compress ZLIB high level compression (one of NONE, ZLIB, SNAPPY)

orc.compress.size 262,144 number of bytes in each compression chunk

orc.stripe.size 67,108,864 number of bytes in each stripe

orc.row.index.stride 10,000 number of rows between index entries (must be >= 1000)

orc.create.index true whether to create row indexes

orc.bloom.filter.columns "" comma separated list of column names for which bloom filter should be created

orc.bloom.filter.fpp 0.05 false positive probability for bloom filter (must >0.0 and <1.0)

For example, creating an ORC stored table without compression:

create table Addresses (
 name string,
 street string,
 city string,
 state string,
 zip int
) stored as orc tblproperties ("orc.compress"="NONE");

Serialization and Compression

The serialization of column data in an ORC file depends on whether the data type is integer or string.

Integer Column Serialization

Integer columns are serialized in two streams.

present bit stream: is the value non-null?
data stream: a stream of integers

Integer data is serialized in a way that takes advantage of the common distribution of numbers:

Integers are encoded using a variable-width encoding that has fewer bytes for small integers.
Repeated values are run-length encoded.
Values that differ by a constant in the range (-128 to 127) are run-length encoded.

The is based on Google's protocol buffers and uses the high bit to represent whether this byte is not the last and the lower 7 bits to variable-width encoding
encode data. To encode negative numbers, a zigzag encoding is used where 0, -1, 1, -2, and 2 map into 0, 1, 2, 3, 4, and 5 respectively.

Each set of numbers is encoded this way:

If the first byte (b0) is negative:
-b0 variable-length integers follow.

If the first byte (b0) is positive:
it represents b0 + 3 repeated integers
the second byte (-128 to +127) is added between each repetition
1 variable-length integer.

In the first byte specifies run length and whether the values are literals or duplicates. Duplicates can step by -128 to +128. Run-length run-length encoding,
encoding uses protobuf style variable-length integers.

String Column Serialization

Serialization of string columns uses a dictionary to form unique column values. The dictionary is sorted to speed up predicate filtering and improve
compression ratios.

String columns are serialized in four streams.

Version 0.14.0+: CONCATENATE

ALTER TABLE table_name [PARTITION partition_spec] CONCATENATE can be used to merge small ORC files into a larger file,
starting in . The merge happens at the stripe level, which avoids decompressing and decoding the data.Hive 0.14.0

https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-AlterTable/PartitionConcatenate
https://issues.apache.org/jira/browse/HIVE-7509

1.
2.
3.
4.

present bit stream: is the value non-null?
dictionary data: the bytes for the strings
dictionary length: the length of each entry
row data: the row values

Both the dictionary length and the row values are run-length encoded streams of integers.

Compression

Streams are compressed using a codec, which is specified as a table property for all streams in that table. To optimize memory use, compression is done
incrementally as each block is produced. Compressed blocks can be jumped over without first having to be decompressed for scanning. Positions in the
stream are represented by a block start location and an offset into the block.

The codec can be Snappy, Zlib, or .none

ORC File Dump Utility

The ORC file dump utility analyzes ORC files. To invoke it, use this command:

// Hive version 0.11 through 0.14:
hive --orcfiledump <location-of-orc-file>

// Hive version 1.1.0 and later:
hive --orcfiledump [-d] [--rowindex <col_ids>] <location-of-orc-file>

// Hive version 1.2.0 and later:
hive --orcfiledump [-d] [-t] [--rowindex <col_ids>] <location-of-orc-file>

// Hive version 1.3.0 and later:
hive --orcfiledump [-j] [-p] [-d] [-t] [--rowindex <col_ids>] [--recover] [--skip-dump]
 [--backup-path <new-path>] <location-of-orc-file-or-directory>

Specifying in the command will cause it to dump the ORC file data rather than the metadata (Hive and later).-d 1.1.0

Specifying with a comma separated list of column ids will cause it to print for the specified columns--rowindex row indexes , where 0 is the top level
struct containing all of the columns and 1 is the first column id (Hive 1.1.0 and later).

Specifying in the command will print the timezone id of the writer.-t

Specifying in the command will print the ORC file metadata in JSON format. To pretty print the JSON metadata, add to the command.-j -p

Specifying in the command will recover a corrupted ORC file generated by Hive streaming.--recover

Specifying along with will perform recovery without dumping metadata.--skip-dump --recover

Specifying with a will let the recovery tool move corrupted files to the specified backup path (default: /tmp).--backup-path new-path

 is the URI of the ORC file.<location-of-orc-file>

 is the URI of the ORC file or directory. From onward, this URI can be a directory containing ORC files.<location-of-orc-file-or-directory> Hive 1.3.0

ORC Configuration Parameters

The ORC configuration parameters are described in .Hive Configuration Properties – ORC File Format

ORC Format Specification
The ORC specification has moved to .ORC project

https://issues.apache.org/jira/browse/HIVE-7896
https://issues.apache.org/jira/browse/HIVE-7896
https://issues.apache.org/jira/browse/HIVE-11669
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-ORCFileFormat
https://orc.apache.org/specification/

	LanguageManual ORC

