
HCatalog DynamicPartitions
Dynamic Partitioning

Dynamic Partitioning
Overview

External Tables
Hive Dynamic Partitions

Usage with Pig
Usage from MapReduce

Overview

When writing data in HCatalog it is possible to write all records to a single partition. In this case the partition column(s) need not be in the output data.

The following Pig script illustrates this:

A = load 'raw' using HCatLoader();
...
split Z into for_us if region='us', for_eu if region='eu', for_asia if region='asia';
store for_us into 'processed' using HCatStorer("ds=20110110, region=us");
store for_eu into 'processed' using HCatStorer("ds=20110110, region=eu");
store for_asia into 'processed' using HCatStorer("ds=20110110, region=asia");

In cases where you want to write data to multiple partitions simultaneously, this can be done by placing partition columns in the data and not specifying
partition values when storing the data.

A = load 'raw' using HCatLoader();
...
store Z into 'processed' using HCatStorer();

The way dynamic partitioning works is that HCatalog locates partition columns in the data passed to it and uses the data in these columns to split the rows
across multiple partitions. (The data passed to HCatalog have a schema that matches the schema of the destination table and hence should always must
contain partition columns.) It is important to note that partition columns can’t contain null values or the whole process will fail.

It is also important to note that all partitions created during a single run are part of one transaction; therefore if any part of the process fails, none of the
partitions will be added to the table.

External Tables

Starting in HCatalog 0.5, dynamic partitioning on external tables was broken (). This issue was fixed in Hive 0.12.0 by creating dynamic HCATALOG-500
partitions of external tables in locations based on metadata rather than user specifications (). Starting in Hive 0.13.0, users are able to HIVE-5011
customize the locations by specifying a path pattern in the job configuration property hcat.dynamic.partitioning.custom.pattern (). Static HIVE-6109
partitions for external tables can have user-specified locations in all Hive releases.

For example, if in Hive 0.12.0 a table named user_logs is partitioned by (year, month, day, hour, minute, country) and stored at external location "hdfs://hcat
", then the locations of its dynamic partitions have the standard Hive format which includes keys as well as values, such as:/data/user_logs

hdfs://hcat/data/user_logs/year=2013/month=12/day=21/hour=06/minute=10/country=US

In Hive 0.13.0 and later, hcat.dynamic.partitioning.custom.pattern can be configured to a custom path pattern. For example, the pattern "${year}/${month}
/${day}/${hour}/${minute}/${country}" omits keys from the path:

hdfs://hcat/data/user_logs/2013/12/21/06/10/US

Each dynamic partition column must be present in the custom location path in the format ${column_name}, and the custom location path must consist of all
dynamic partition columns. Other valid custom path strings include:

data/${year}/${month}/${day}/${country}
${year}${month}${day}/country=${country}
output/yr=${year}/mon=${month}/day=${day}/geo=${country}

S the fee for another example. Also seeHCatalog Configuration Properties PDF attachment to HIVE-6019 or details of the implementation.

Version

This section describes changes that occurred in HCatalog 0.5, 0.12, and 0.13 for dynamic partitions of external tables.

https://issues.apache.org/jira/browse/HCATALOG-500
https://issues.apache.org/jira/browse/HIVE-5011
https://issues.apache.org/jira/browse/HIVE-6109
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+Configuration+Properties
https://issues.apache.org/jira/secure/attachment/12622686/HIVE-6109.pdf

Hive Dynamic Partitions

Information about Hive dynamic partitions is available here:

Design Document for Dynamic Partitions
Original design doc
HIVE-936

Tutorial: Dynamic-Partition Insert
Hive DML: Dynamic Partition Inserts

Usage with Pig

Usage from Pig is very simple! Instead of specifying all keys as one normally does for a store, users can specify the keys that are actually needed.
HCatOutputFormat will trigger on dynamic partitioning usage if necessary (if a key value is not specified) and will inspect the data to write it out
appropriately.

So this statement...

store A into 'mytable' using HCatStorer("a=1, b=1");

...is equivalent to any of the following statements, if the data has only values where a=1 and b=1:

store A into 'mytable' using HCatStorer();

store A into 'mytable' using HCatStorer("a=1");

store A into 'mytable' using HCatStorer("b=1");

On the other hand, if there is data that spans more than one partition, then HCatOutputFormat will automatically figure out how to spray the data
appropriately.

For example, let's say a=1 for all values across our dataset and b takes the values 1 and 2. Then the following statement...

store A into 'mytable' using HCatStorer();

...is equivalent to either of these statements:

store A into 'mytable' using HCatStorer("a=1");

split A into A1 if b='1', A2 if b='2';
store A1 into 'mytable' using HCatStorer("a=1, b=1");
store A2 into 'mytable' using HCatStorer("a=1, b=2");

Usage from MapReduce

As with Pig, the only change in dynamic partitioning that a MapReduce programmer sees is that they don't have to specify all the partition key/value
combinations.

A current code example for writing out a specific partition for (a=1, b=1) would go something like this:

Map<String, String> partitionValues = new HashMap<String, String>();
partitionValues.put("a", "1");
partitionValues.put("b", "1");
HCatTableInfo info = HCatTableInfo.getOutputTableInfo(dbName, tblName, partitionValues);
HCatOutputFormat.setOutput(job, info);

And to write to multiple partitions, separate jobs will have to be kicked off with each of the above.

With dynamic partitioning, we simply specify only as many keys as we know about, or as required. It will figure out the rest of the keys by itself and spray
out necessary partitions, being able to create multiple partitions with a single job.

https://cwiki-test.apache.org/confluence/display/Hive/DynamicPartitions
https://issues.apache.org/jira/secure/attachment/12437909/dp_design.txt
https://issues.apache.org/jira/browse/HIVE-936
https://cwiki-test.apache.org/confluence/display/Hive/Tutorial#Tutorial-Dynamic-PartitionInsert
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts

Navigation Links

Previous: Storage Formats
 Next: Notification

Hive design document: Dynamic Partitions
 Hive tutorial: Dynamic-Partition Insert

 Hive DML: Dynamic Partition Inserts

General: – – – HCatalog Manual WebHCat Manual Hive Wiki Home Hive Project Site

https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+StorageFormats
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+Notification
https://cwiki-test.apache.org/confluence/display/Hive/DynamicPartitions
https://cwiki-test.apache.org/confluence/display/Hive/Tutorial#Tutorial-Dynamic-PartitionInsert
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog
https://cwiki-test.apache.org/confluence/display/Hive/WebHCat
https://cwiki-test.apache.org/confluence/display/Hive/Home
http://hive.apache.org/

	HCatalog DynamicPartitions

