
1.
a.
b.

1.
2.
3.

1.
2.

a.
3.

4.
a.
b.

Kafka replication system tests

A. Overview
Design documentation

B. Kafka Replication Testing Plan
B.1 Test Contract:
B.2 Test dimensions: Varying each parameters to provide different test scenario
C. Test Cases

A. Overview

According to Kafka Replication Design document, "The purpose of adding replication in Kafka is for stronger durability and higher availability. We want to
guarantee that any successfully published message will not be lost and can be
consumed, even when there are server failures. Such failures can be caused by machine error, program error, or more commonly, software upgrades."

Design documentation
https://issues.apache.org/jira/secure/attachment/12487175/kafka_replication_highlevel_design.pdf
https://cwiki.apache.org/confluence/display/KAFKA/kafka+Detailed+Replication+Design+V3

B. Kafka Replication Testing Plan

B.1 Test Contract:

Produce and consume messages to x topics and y partitions.
This test sends m messages to n replicas.
At the end verifies the log size and contents as well as using a consumer to verify that there is no message loss.

B.2 Test dimensions: Varying each parameters to provide different test scenario

Parameter Value Set

No. of partitions 1, 5, 10

No. of replica factors 1 ~ 6

Log segment sizes 1K, 2K, 10K

No. of topics 1, 5, 10, 100

Producer compression On / Off

Producer acks -1, 1

Producer mode Sync, Async

Failure Type
(Applicable in Failure Testcases) Controlled Failure (kill -15)

Hard Failure (kill -9)
Soft Failure (long pause during GC)

C. Test Cases

Functional Test Description

C.1 Replication Basic
Setup: Configure 1 Zookeeper, 1 ~ 6 brokers, 1 producer, 1 consumer
Test Description:

Follow the steps in B.1
Test Dimensions: Varying the parameters within the Value Set to observe the behavior of replication against
different combinations
Validation:

Verify that all message id are matching in both producer log and consumer log
Verify that all corresponding topic-partition log segment files checksums are matching across all replicas

https://issues.apache.org/jira/secure/attachment/12487175/kafka_replication_highlevel_design.pdf
https://cwiki.apache.org/confluence/display/KAFKA/kafka+Detailed+Replication+Design+V3

1.
2.

a.
b.
c.

3.

4.
a.

1.
2.

a.
b.
c.
d.

3.

4.
a.
b.

1.
2.

a.
b.

c.
d.

3.

4.
a.
b.

1.
2.

a.
b.

c.
d.

3.

4.
a.
b.

1.
a.
b.
c.

2.
a.
b.

c.
3.

4.
a.
b.

C.2 Replication Leader
Election Setup: Configure 1 Zookeeper, 1 ~ 6 brokers, 1 producer, 1 consumer

Test Description:
Follow the steps in B.1
During the test session, find leader from brokers' log4j message and introduce failure to Leader
Leader re-election will be triggered

Test Dimensions: Varying the parameters within the Value Set to observe the behavior of replication against
different combinations
Validation:

Verify that new leader is re-elected by parsing the brokers' log4j messages log files

C.3 Replication with Leade
r Failure Setup: Configure 1 Zookeeper, 1 ~ 6 brokers, 1 producer, 1 consumer

Test Description:
Follow the steps B.1
During the test session, find leader from brokers' log4j message and introduce failure to Leader
The no. of failures can be specified in the corresponding testcase_<n>_properties.json
The type of failures are defined in Test Dimentions in B.2 (Controlled, Hard, Soft)

Test Dimensions: Varying the parameters within the Value Set to observe the behavior of replication against
different combinations
Validation:

Verify that all message id are matching in both producer log and consumer log
Verify that all corresponding topic-partition log segment files checksums are matching across all replicas

C.4 Replication with Follow
er Failure Setup: Configure 1 Zookeeper, 1 ~ 6 brokers, 1 producer, 1 consumer

Test Description:
Follow the steps in B.1
During the test session, find leader from brokers' log4j message and exclude that broker and
introduce failure to one of the other brokers which are Followers.
The no. of failures can be specified in the corresponding testcase_<n>_properties.json
The type of failures are defined in Test Dimentions in B.2 (Controlled, Hard, Soft)

Test Dimensions: Varying the parameters within the Value Set to observe the behavior of replication against
different combinations
Validation:

Verify that all message id are matching in both producer log and consumer log
Verify that all corresponding topic-partition log segment files checksums are matching across all replicas

C.5 Replication with Contro
ller Failure Setup: Configure 1 Zookeeper, 1 ~ 6 brokers, 1 producer, 1 consumer

Test Description:
Follow the steps in B.1
During the test session, find Controller from either brokers' log4j messages or querying the Bean and
introduce failure to Controller.
The no. of failures can be specified in the corresponding testcase_<n>_properties.json
The type of failures are defined in Test Dimentions in B.2 (Controlled, Hard, Soft)

Test Dimensions: Varying the parameters within the Value Set to observe the behavior of replication against
different combinations
Validation:

Verify that all message id are matching in both producer log and consumer log
Verify that all corresponding topic-partition log segment files checksums are matching across all replicas

C.6 Replication with Mirror
Maker Failure Setup: Configure 2 Clusters with 1 Mirror Maker:

Source: 1 Zookeeper, 1 ~ 6 brokers, 1 producer
Mirror Maker to replicate data from Source to Target
Target: 1 Zookeeper, 1 ~ 6 brokers, 1 consumer

Test Description:
Follow the steps in B.1
During the test session, introduce failure to Mirror Maker. The no. of failures can be specified in the
corresponding testcase_<n>_properties.json
The type of failures are defined in Test Dimentions in B.2 (Controlled, Hard, Soft)

Test Dimensions: Varying the parameters within the Value Set to observe the behavior of replication against
different combinations
Validation:

Verify that all message id are matching in both producer log and consumer log
Verify that all corresponding topic-partition log segment files checksums are matching across all replicas

1.
a.
b.
c.

2.
a.

3.

4.
a.
b.

1.
a.
b.
c.
d.
e.
f.
g.
h.
i.

2.
a.
b.

c.
3.
4.

a.
b.

C.7 Replication with Backw
 ard Compatibility

(0.7 & 0.8 Kafka jars) /
Migration Tool

Setup: Configure 2 Clusters with 1 Mirror Maker:
Source: 1 Zookeeper, 1 ~ 6 brokers, 1 producer ()running in 0.7 Kafka jar
Mirror Maker to replicate data from Source to Target
Target: 1 Zookeeper, 1 ~ 6 brokers, 1 consumer ()running in 0.8 Kafka jar

Test Description:
Follow the steps in B.1

Test Dimensions: Varying the parameters within the Value Set to observe the behavior of replication against
different combinations
Validation:

Verify that all message id are matching in both producer log and consumer log
Verify that all corresponding topic-partition log segment files checksums are matching across all replicas

C.8 Replication with Produ
ction Setup Setup: Configuration as follows:

Zookeeper: 5 nodes cluster
Brokers: 8 nodes cluster
log segment size: 1GB
Producer compression: On
Async Producer: Yes
Producer Acks: -1
Replica Factor: 3
No. Topics: 1000
No. Partitions: 10

Test Description:
Repeat the steps in B.1
During the test session, randomly introduce failure to Leader, Follower, Mirror Maker or Controller
constantly. This would be a reliability / stress test which should last a few hours.
The type of failures are defined in Test Dimentions in B.2 (Controlled, Hard, Soft)

Test Dimensions: Fixed at the set up stage.
Validation:

Verify that all message id are matching in both producer log and consumer log
Verify that all corresponding topic-partition log segment files checksums are matching across all replicas

	Kafka replication system tests

