Kafka APl Refactoring

® Current Architecture
© The problem
© The ldea
® Purgatories and Delayed Operations
© Delayed Request (Kafka Operation)
o Delayed Produce Request (Message Append Operation)
© Delayed Fetch Request (Message Fetch Operation)
© Request Purgatory (Kafka Purgatory)
® Kafka Server Modules
© Replica Manager
© Coordinator / Offset Manager
© Kafka Apis
® Request Handling Workflow
© The caveat

Current Architecture

In 0.8.1.1 with in-built offset management, server side architecture with the life cycle of the produce/fetch request is summarized below (caller --> callee):

ProduceRequest --> 1) Kaf kaApi s. appendToLocal Log() --> Repl i caManager . getPartition() -->
Partition. appendMessagesTolLeader ()

2) Kaf kaApi s. maybeUnbl ockDel ayedFet ch()
3) Request Channel . sendResponse() OR Producer Request Purgat ory. wat ch()
4) Producer Request Pur gat ory. updat e()

Fet chRequest --> 1) Kaf kaApi s. maybeUpdat ePartiti onHW) --> Repl i caManager . r ecor dFol | ower Posi ti on() -->
Partition. updat eLeader HMAndMaybeExpandl sr() / maybel ncr ement Leader HW()

2) Producer Request Purgat ory. updat e() --> Del ayedProduce. i sSati sfied() -->
Kaf kaApi s. maybeUnbl ockDel ayedFet chRequest s()

3) Kaf kaApi s. readMessageSet --> Repl i caManager . get Repl i ca() -->
Log. read()

4) Request Channel . sendResponse() OR FetchRequest Purgatory. wat ch()

Pr oducer Request Purgat ory:

/1 called as step 4) of handling produce request, or step 2) of handling fetch request
Pr oducer Request Pur gat ory. updat e() --> Del ayedProduce. respond() -->
Request Channel . sendResponse()

/] any tinme
Producer Request Pur gat ory. expi re() --> Del ayedPr oduce. respond() -->
Request Channel . sendResponse()

Fet chRequest Purgatory:

/'l called as step 2) of handling produce request, or inside Del ayedProduce.isSatisfied()
Kaf kaApi s. maybeUnbl ockDel ayedFet chRequest s() --> Fet chRequest Pur gat ory. updat e() -->
Del ayedFet ch. respond() --> Request Channel . sendResponse()

/1 any tinme
Fet chRequest Pur gat ory. expi re() --> Del ayedFet ch. respond() -->
Request Channel . sendResponse()

https://cwiki.apache.org/confluence/display/KAFKA/Inbuilt+Consumer+Offset+Management

The problem

As we can see from above, since delayed produce needs to access KafkaApis.maybeUnblockDelayedFetchRequests(), etc, and delayed fetch needs to
fetch the data to form the response. As a result, we ended up keeping the appending and fetching logic inside KafkaAPIs and also keeping purgatories
/delayed requests inside Kafka APIs to let them access these functions/variables. The problems for this are:

1) Logic of the append message / read message from Replica Manager leaks into KafkaAPIs, and KafkaAPIs itself becomes very huge containing all
purgatory / delayed requests classes.

2) However, logic for satisfying delayed fetch requests are not correct: it needs to be related to HW modifications. Hence it needs to also access Partition,
which will lead to more logic leak if we follow current architecture.

3) With inbuild offset management, we have to hack the KafkaAPIs and its corresponding delayed requests as follows:

Commi t Of f set Request --> 1) Kaf kaApi s. appendToLocal Log() --> O f set Manager.
producer Request FromX f set Conmi t () /1 returns a new Producer Request fromthe O fset Conm t Request

2) Kaf kaApi s. appendTolLocal Log()
3) O fset Manager. put O f set s() /'l put the offset into cache

4) O f set Manager . of f set Commi t Request Opt () . get () /1 transform back a
O f set Commi t Response

5) Request Channel . sendResponse() OR Producer Request Purgat ory. wat ch()
Del ayedProduce. respond() =--> 1) if(not timed out) OfsetManager. put Of f sets()

2) O fset Manager . of f set Conmi t Request Opt () . get ()

3) Request Channel . sendResponse()

The architecture diagram is shown below:

blocked URL

The Idea

Is to refactor the Kafka Apis along with Replica Manager and Offset Manager (Coordinator) such that the produce/fetch purgatories are moved to replica
manager, and are isolated from requests (i.e. they may be just purgatories for append and fetch operations). By doing so:

1) Kafka API becomes thinner, only handling request-level application logic and talk to Request Channel.

2) Read message and append message logic is moved to Replica Manager, which handles the logic of "committed" appending and fetching "committed
data".

3) Offset Manager (Coordinator) only needs to talk to the Replica Manager for handling offset commits, no need to hack Kafka Apis and Delayed Fetch
requests.

This refactoring will also benefit the following new consumer / coordinator development.

Purgatories and Delayed Operations

We refactor the purgatories and delayed requests (now should be called operations) as follows. Here all the module names remain the same, with
renaming suggestion in the bracket just for clear indication.

Delayed Request (Kafka Operation)

The base kafka operation just contains:

https://iwww.corp.linkedin.com/wiki/cf/download/attachments/106122500/Current%20Status.jpg?version=1&modificationDate=1407173912000&api=v2

keys: Seq[Any] // currently it is called Del ayedRequest Key, but we can renane it as we like
tinmeout: long // timeout value in nilliseconds
cal | back: Callback // this is the callback function triggered upon conplete, either due to timeout or operation

fini shed

One note here is that a new callback instance needs to be created for each operation, since it will need to remember the request object that it needs to
respond on. The base callback class can be extended, with the basic parameters:

/1 trigger the onConplete function given that whether the operation has succeeded or failed (e.g. tined out).
onConpl et e(Bool ean)

Besides these fields, a kafka operation also have the following interface:

/1 check if nyself is satisfied
isSatisfied(): Bool ean

/] operations upon expiring nyself
expire() = this.callback.onConplete(false) // can be overridden for recording nmetrics, etc

Delayed Produce Request (Message Append Operation)

Maintains the append metadata, including the replicate condition:

appendSt at us: Map[Topi cAndPartition, AppendStatus] // AppendStatus include starting offset, required offset,
error code, etc

replicateCondition: ReplicateCondition // ReplicationCondition can be just a ack integer, but may be extended
in the future

In addition, it implements the interface as:

isSatisfied(replicaManager): Boolean = // access the replicaManager to check if each partition's append status
has satisfied the replicate condition

Delayed Fetch Request (Message Fetch Operation)

Maintains the fetch metadata, including the fetch min bytes:

fetchlnfo: Map[Topi cAndPartition, LogOffsetMetadata] // LogOifset Metadata include nmessage of fset, segnent
starting offset and relative segnent position

fetchM nBytes: int

And implements the interface as:

isSatisfied(replicaManager): Boolean = // access the replicaManager to check if the accunul ated bytes exceeds
the mninum bytes, with sonme corner case special handling.

Request Purgatory (Kafka Purgatory)

The base purgatory provides the following APIs:

/1 check if an operation is satisfied already; if not, watch it.
maybeWat ch(operati on: Operation): Bool ean

/1 return a list of operations that are satisfied given the key
updat e(Any): List[Kaf kaOperati ons]

And its expiry reaper will purge the watch list and for each expired operation trigger operation.expire(). This purgatory is generic and can be actually used
for different kinds of operations.

Kafka Server Modules

With these purgatories and operations, server side modules can be refactored as follows:

Replica Manager

Replica Manager maintain metadata of partitions, including their local and remote replicas, and talks to Log Manager for log operations such as log
truncation, etc. Here is the proposed API:

/] append nessages to | eader replicas of the partition, and wait for replicated to other replicas,

/1 the callback function will be triggered either when tinmeout or the replicate condition is satisfied
appendMessages(Map[Topi cAndPartition, ByteBufferMessageSet], ReplicateCondition /* acks, etc */, long /*
tinmeout */, Callback) {

/1 1. Partition.appendToLocal Log()

/1 2. If can respond now, call Callback.onConplete(true)
/1 3. Otherwi se create new Del ayedAppend(..., Callback)
/1 4. AppendPurgat ory. maybeWat ch(append)

}

/] fetch only conmtted nessages fromthe | eader replica,
/1 the callback function will be triggered either when tinmeout or required fetch info is satisfied
f et chMessages(Map[Topi cAndPartition, Fetchlnfo], int /* mn bytes*/, long /* tinmeout */, RespondCall back) {

/1 1. Log.read()

/1 2. If can respond now, call Callback.onConplete(true)

/1 3. Qtherw se create new Del ayedFetch(..., new FetchCal |l back() { onConplete(): { fetchMessages;
RespondCal | back. onConpl ete(true); } })

/1 4. FetchPurgatory. maybeWat ch(append)
}

/] stop a local replica
st opRepl i ca(Topi cAndPartition, Bool ean)

/'l make local replica | eader of the partitions
| eadPartition(Map[Topi cAndPartition, PartitionState])

/'l make local replica follower of the partitions
foll owPartition(Map[Topi cAndPartition, PartitionState])

/1l get (or create) partition, get (or create) replica, etc..
getPartition(Topi cAndPartition)
get Repl i ca(Topi cAndPartition, int)

Coordinator / Offset Manager

Coordinator's offset manager will talk to the replica manager for appending messages.

/'l trigger the callback only when the offset is conmtted to replicated |ogs
put O f set s(Map[Topi cAndPartition, O fsetlnfo], RespondCallback) {

/1 1. replicaManager. appendMessage(... , new O fset Conmit Cal | back{ onConplete (): { putToCache;
RespondCal | back. onConpl ete(true); } })
}

/| access the cache to get the offsets
get O f set s(Set [Topi cAndPartition]) : Map[Topi cAndPartition, Ofsetlnfo]

Kafka Apis

Now the Kafka APIs becomes:

handl ePr oduce(ProduceRequest) = // call replica-nmanager's appendMessages wi th cal | back sendi ng produce response
handl eFet ch(Fet chRequest) = // call replica-nanager's fetchMessages with callback sending fetch response

handl eCommi t O f set (Commi t OF f set Request) = // call coordinator's offset nanager with callback sending commt
of fset response

handl eFet chOf f set (Fet chOf f set Request) = // call coordinator's offset nanager to get the offset, and then send
back the response.

Request Handling Workflow

With the above refactoring, the request life cycle becomes:

ProduceRequest --> Kaf kaApi s. handl ePr oduce() --> Repl i caManager . appendMessages() -->
Partition. appendMessagesTolLeader ()

-->
AppendPur gat ory. maybeWat ch()
--> Cal | back(): Request Channel . sendResponse()

Fet chRequest --> Kaf kaApi s. handl eFet ch() --> Repl i caManager . f et chMessages() -->
Repl i caManager . r eadMessageSet () --> Log. read()

.-
Fet chPur gat ory. maybeWat ch(new O f set Commi t Cal | back)

.-
O fset Conmi t Cal | back(): ReplicaManager.readMessageSet ()
RespondCal | back. onConpl et e()

--> RespondCal | back: Request Channel . sendResponse()

Fet chRequest --> Kaf kaApi s. handl eConmi t Of f set () --> Coordinator. Comm t O f set s() -->
Repl i caManager . appendMessages(new O f set Conmi t Cal | back) --> Partition. appendMessagesToLeader ()
--> AppendPur gat ory. maybeWat ch()

-
O fset Conmi t Cal | back(): O f set Manager. put Of f set s()
RespondCal | back. onConpl et e()

RespondCal | back(): Request Channel . sendResponse()
Partition. maybel ncrenent Leader HW\() --> Repl i caManager . unbl ockDel ayedFet chRequests() /
unbl ockDel ayedPr oduceRequest s()
Partition. appendMessagesTolLeader () --> Repl i caManager . unbl ockDel ayedFet chRequest s()
Partition.recordFol | ower LOE() --> Repl i caManager . unbl ockDel ayedPr oduceRequest s()
The caveat

As we can see, with fetch request and offset commit request, a nested callback is used (RepondCallback from Kafka APIs for sending the response
through channel, and FetchCallback / OffsetCommitCallback for fetching the data for response / putting offset into cache). This nesting is not ideal, but
necessary if want to have the strict layered architecture.

The new architectural diagram will be:

blocked URL

https://iwww.corp.linkedin.com/wiki/cf/download/attachments/106122500/Step%20Three.jpg?version=1&modificationDate=1407176862000&api=v2

	Kafka API Refactoring

