
Kafka Command Line and Related Improvements
The goals behind the command line shell are fundamentally to provide a centralized management for Kafka operations.

There are a lot of different kafka tools. Right now I think 5-6 of them are being used commonly. I was thinking we could start by taking http
s://cwiki.apache.org/confluence/display/KAFKA/System+Tools and https://cwiki.apache.org/confluence/display
/KAFKA/Replication+tools and exposing them in a plugin type way for a command line shell interface. This
would also include a new global broker configuration management and access to the tools we already have
outside of the scripts both through a new wire protocol message type.

1) We need to add a new Admin message to the wire protocol that will be able to deal with passing the command line utility calls to the tools and global
configuration manager on the broker (any broker). Any tool performing a task will (should be able to, need to flesh this out more) be able to execute but
instead of on the command line will be on a broker thread. The controller will continue to-do the tasks it is doing today such as "create topic" however; the
TopicCommand will be called from within the handleAdminRequestTools.

2) We need to implement the handleAdminRequest.

3) We need to build a client for the wire protocol. I think should be a simple CLI

It would be both: command line and shell.

so

kafka -b brokerlist -a reasign-partition status

would run from the cli and

kafka shell -b brokerlist
kafka>describe;
... kafka-topics.sh --describe
kafka>set topic_security = true['pci','profile','dss']
...etc

An important item is that folks that are using existing tools we should have an easy api type way so they can keep doing that and get benefit too.

https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
https://cwiki.apache.org/confluence/display/KAFKA/System+Tools
https://cwiki.apache.org/confluence/display/KAFKA/Replication+tools
https://cwiki.apache.org/confluence/display/KAFKA/Replication+tools

This interface should also have some monitoring stats too, e.g visualize in text the consumer lag trending between offset committed and log end offset.

kafka>use topic name;
kafka>stats;

not sure right this minute if we should do this in python, java or scala. I think whoever works on it can decide we can support accross the committers I think
whatever it is. My thoughts are it should be in the ./clients folder.

... we "may" also want to have the CLI expose and run via HTTP REST too however; I think this can be quickly easily done by someone simply if we build
it right.

4) The Global Configuration Manager. This is VERY important to the goals of these changes. MANY configuration (much like topic level) are actually
global to EVERY broker and brokers (through server.properties) should be able to override but the "default" should come from storage (for now zookeeper).

a) setting this goes through the CLI and the handleAdminRequest()

b) using this is layered like this ... within KafkaApi we implement a new class that can flatten/figure out the right property. Check server.properties (we can
make that level 1) and if not found use what we get from storage (for now zookeeper) and if not found then use what is default in the code. This will be
very nice because you can set a default for EVERY broker for xyz configuration and not have to manage it accorss brokers with properties file. Centralized
configuration

The top level for this work will be and broken into sub tickets.https://issues.apache.org/jira/browse/KAFKA-1694

Potential Gotchas

using RQ/RP wire protocol to the controller instead of the current way (via ZK admin path) may expose concurrency on the admin requests, which
 may not be supported yet. https://issues.apache.org/jira/browse/KAFKA-1305

Proposed RQ/RP Format

For each type of Admin Request a separate type of Wire protocol message is created.

Currently there are 5 types of messages which support TopicCommand - CreateTopic(Request | Response), AlterTopic, DeleteTopic, Descr

ibeTopic, ListTopics. And a special message type to identify cluster info - (read Kafka Admin Command Line Internals for ClusterMetadata

details).

The same notation as in is used here. The only difference - new Kafka Protocol metatype - (A Guide To The Kafka Protocol MaybeOf "?" in notation),

when used means value is optional in message. To define value existence special control byte is prepended before each value (- field is absent, 0

otherwise - read value normally).

Cluster Metadata Request

ClusterMetadataRequest
=>

Cluster Metadata Response

ClusterMEtadataResponse => ErrorCode [Broker] ?
(Controller)
 ErrorCode => int16
 Broker => NodeId Host Port

 NodeId => int32
 Host => string
 Port => int32
Controller => Broker

ClusteMetadataRequest is a request with no arguments.

ClusterMetadataResponse holds error code (in case of successful result), list of brokers in cluster and optionally broker serving a Controller's role 0
(returning empty Controller most likely means either error during request processing or cluster being in some intermediate state).

Admin RQ/RP format

All admin messages listed below are required to be sent only to Controller broker. Only controller will process such messages. If Admin message is sent to
an ordinary broker a special error code is returned (code). In case of other failure during processing message is 22 AdminRequestFailedError
returned.

https://issues.apache.org/jira/browse/KAFKA-1694
https://issues.apache.org/jira/browse/KAFKA-1305
https://cwiki-test.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol

Error Code Description

AdminRequestFailed 21 Unexpected error occurred while processing Admin request.

InvalidRequestTarget 22 Target broker (id=<this_broker_id>) is not serving a controller's role.

Create Topic Request

CreateTopicRequest => TopicName ?(Partitions) ?(Replicas) ?(ReplicaAssignment)
[Config]
 TopicName => string
 Partitions => int32
 Replicas => int32
 ReplicaAssignment => string
 Config => string

Create Topic Response

CreateTopicResponse => ErrorCode ?

(ErrorDescription)

 ErrorCode => int16

 ErrorDescription => string

CreateTopicRequest requires topic name and either (partitions+replicas) or replicas assignment to create topic (validation is done on server side). You
can also specify topic-level configs to create topic with (to use default set an empty array), format .key=value

CreateTopicResponse is fairly simple - you receive error code (as always identifies) and optionally error description. Usually it will hold the 0 NO_ERROR
higher level exception that happened during command execution.

Alter Topic Request

AlterTopicRequest => TopicName ?(Partitions) ?(ReplicaAssignment) [AddedConfig] [DeletedConfig]
 TopicName => string
 Partitions => int32
 Replicas => int32
 AddedConfig => string
 DeletedConfig => string

Alter Topic Response

AlterTopicResponse => ErrorCode ?
(ErrorDescription)
 ErrorCode => int16
 ErrorDescription => string

AlterTopicRequest is similar to previous, to specify topic level settings that should be removed, use array (just setting keys).DeletedConfig

AlterTopicResponse is similar to .CreateTopicResponse

Delete Topic Request

DeleteTopicRequest =>
TopicName
 TopicName => string

Delete Topic Response

DeleteTopicResponse => ErrorCode ?
(ErrorDescription)
 ErrorCode => int16
 ErrorDescription => string

DeleteTopicRequest requires only topic name which should be deleted.

DeleteTopicResponse is similar to .CreateTopicResponse

Describe Topic Request

DescribeTopicRequest =>
TopicName
 TopicName => string

Describe Topic Response

DescribeTopicResponse => ErrorCode ?(ErrorDescription) ?(TopicDescription)
 ErrorCode => int16
 ErrorDescription => string
TopicDescription => TopicName TopicConfigDetails [TopicPartitionDetails]

TopicName => string
TopicConfigDetails => Partitions ReplicationFactor [Config]

Partitions => int32
ReplicationFactor => int32
Config => overridden topic-level configs

TopicPartitionsDetails => PartitionId ?(Leader) [Replica] [ISR]
PartitionId => int32
Leader => int32
Replica => int32
ISR => int32

DescribeTopicRequest requires only topic name.

 DescribeTopicResponse besides errorCode and optional errorDescription which are used in the same way as in previous messages, holds optional
(non empty if execution was successful) structure. Its structure is the following:TopicDescription

Field Description

TopicName The name of the topic for which description is provided.

TopicConfigDetails A structure that holds basic replication details.

Partitions Number of partitions in give topic.

Config Topic-level setting and value which was overridden.

TopicPartitionDetails List describing replication details for each partition.

PartitionId Id of the partition.

Leader Optional broekr-leader id for the described partition.

Replicas List of broker ids serving a replica's role for the partition.

ISR Same as replicas but includes only brokers that are known to be "in-sync"

List Topics Request

ListTopicsRequest
=>

List Topics Response

ListTopicsResponse => ErrorCode ?(ErrorDescription) ?(TopicsList)
 ErrorCode => int16
 ErrorDescription => string
TopicsList => [TopicMarkedForDeletion] [AliveTopic]
TopicMarkedForDeletion => string
AliveTopic => string

ListTopicsRequest is a request with no arguments.

ListTopicsResponse besides errorCode and optional errorDescription which are used in the same way as in previous messages, holds optional (non
empty if execution was successful) two list of topic names - one for deleted topics (marked for deletion) and the second one for ordinary, alive topics.

	Kafka Command Line and Related Improvements

