
KIP-4 - Command line and centralized administrative
operations

Status
Motivation
Public Interfaces
Proposed Changes

General
Metadata Schema
Topic Admin Schema
ACL Admin Schema

Details
1. Wire Protocol Extensions

Schema
New Protocol Errors
Metadata Schema (Voted and Adopted in 0.10.0.0)

Metadata Request (version 1)
Metadata Response (version 1)

Topic Admin Schema
Create Topics Request (KAFKA-2945): (Voted and Committed for 0.10.1.0)
Create Topics Response
Delete Topics Request (KAFKA-2946): (Voted and Planned for 0.10.1.0)
Delete Topics Response
Alter Topics Request

ACL Admin Schema (KAFKA-3266)
List ACLs Response
Alter ACLs Request
Alter ACLs Response

2. Server-side Admin Request handlers
Rejected Alternatives

The goals behind the command line shell are fundamentally to provide a centralized management for Kafka operations.

Status
Current state: Accepted

Discussion thread: here

JIRA:

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Users of Kafka have created dozens of different systems to work with Kafka. Providing a wire protocol administrativethat allows the brokers to execute cod

and public api/client has many benefits including:e

Allows clients in any language to administrate Kafka
Wire protocol is supported by any language

Provides public client for performing admin operations
Ensures integration test code in other projects and clients maintains compatibility
Prevents users from needing to use the Command classes and work around standard output and system exits

Removing the need for admin scripts (kafka-topics.sh, kafka-acls.sh, etc) to talk directly to Zookeeper.
Allows ZNodes to be completely locked down via ACLs
Further hides the Zookeeper details of Kafka

Public Interfaces
Changes to :Wire Protocol

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAA7ooCD3hag%2BV2tVXqmSKDLm1AaUmyiegCihk4n384oq_4q8iA%40mail.gmail.com%3E

1.
2.

Adds the following new Request/Response messages:
CreateTopics
AlterTopics
DeleteTopics
ListAcls
AlterAcls
DescribeConfig (moved to)KIP-133: Describe and Alter Configs Admin APIs
AlterConfig (moved to)KIP-133: Describe and Alter Configs Admin APIs

Modifies Metadata Request/Response to allowing polling for in-progress or complete admin operations. Added fields include:
Add the ability to request no topics with a null topics list
Boolean indicating if a topic is marked for deletion
Boolean indicating if a topic is an internal topic
Rack information (if not added by)KIP-36 Rack aware replica assignment
Boolean indicating if a broker is the controller

Proposed Changes
Proposed changes include 2 parts:

Wire protocol additions and changes
Server-side message handlers and authorization

Follow Up Changes
Changes that should be considered shortly after or are enabled by this KIP included:

General
New Java AdminClient implementation (KIP-117)
Refactor admin scripts and code to use new client where appropriate
Support forwarding requests to the required broker (coordinator, group leader, partition leader) ()KAFKA-1912

See belowRequest Forwarding
Metadata Schema

Consider supporting regex topic filters in the request

Filter internal topics using the returned metadata ()

Topic Admin Schema
Improve the broker side delete topic implementation

Delete is likely to get used more once creation/deletion is made easier with the client. The broker side implementation has had
many jiras.
Currently can't delete unhealthy topics.

Support cluster consistent blocking to wait until all relevant brokers have the required metadata
This may require significant re-work of the controller to do correctly
See belowCluster Consistent Blocking

Implement auto-topic creation client side ()KAFKA-2410
Add topic creation to the MirrorMaker client?
Support renaming topics ()KAFKA-2333

This might required unique ids for topics instead of using the name (this would improve delete too)
Improve reliability and speed of topic deletion

Support force deleting unhealthy topics
Support marking for deletion and async data cleanup

This would required unique ids for topics instead of using the name (this is needed for rename too)
The topic can then be marked as deleted instead of requiring all data to be removed immediately and in the mean time
a new topic with the same name can be created.

ACL Admin Schema
Review privileges for listing and altering ACLs to be more fine grained.
Provide an Authorizer interface using the new Java classes used by the ACL requests/responses ()KAFKA-3509

Deprecate the old one to encourage transition
Define standard Exceptions that can be thrown by the Authorizer in the interface ()KAFKA-3266

Otherwise all exceptions are unknown server exception to the client
Consider building a sync call into the Authorizer to ensure changes are propagated

Details

1. Wire Protocol Extensions

Schema

 Unable to render Jira issues macro, execution

error.

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-133%3A+Describe+and+Alter+Configs+Admin+APIs
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-133%3A+Describe+and+Alter+Configs+Admin+APIs
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-36+Rack+aware+replica+assignment
https://cwiki.apache.org/confluence/display/KAFKA/KIP-117%3A+Add+a+public+AdminClient+API+for+Kafka+admin+operations
https://issues.apache.org/jira/browse/KAFKA-1912
https://issues.apache.org/jira/browse/KAFKA-2410
https://issues.apache.org/jira/browse/KAFKA-2333
https://issues.apache.org/jira/browse/KAFKA-3509
https://issues.apache.org/jira/browse/KAFKA-3507

Overall the idea is to extend Wire Protocol to cover all existing admin commands so that a user does not need to talk directly to Zookeeper and all
commands can be authenticated via Kafka. At the same time, since the Wire Protocol is a public API to the Kafka cluster, it was agreed that the new
Admin schema needs to be "orthogonal", i.e. new messages shouldn't duplicate each other or existing requests, if those already cover particular use cases.
Finally, admin requests are likely to be used not only in CLI tools, where the common use case is create/change/delete a single entity. Since Kafka is able
to maintain a huge number of topics it is vital user can efficiently request many commands at one time. That's why all admin messages essentially are
batch requests, i.e. it is possible to group commands of one type for many topics in one batch reducing network calls. At the same time to make Schema
usage transparent and compliant with existing requests (such as Produce and Fetch) if batch request includes more than one instruction for a specific topic
only the last from the list will be executed, others will be silently ignored.

New Protocol Errors

It is proposed to use existing / add these error codes to the protocol.

Error Description

TopicExistsException Topic with this name already exists

InvalidTopic (existing) Topic name contains invalid characters or doesn't exist

InvalidPartitionsException Partitions field is invalid (e.g. negative or increasing number of partitions in existing topic)

InvalidReplicationFactorException field is invalid (e.g. negative)ReplicationFactor

InvalidReplicaAssignmentException field is invalid (e.g. contains duplicates)ReplicaAssignment

InvalidConfigurationException Configuration setting or value is incorrect

NotControllerException The request was routed to a broker that wasn't the active controller

InvalidRequestException Thrown when a request breaks basic wire protocol rules. (Existing but not mapped)

Generally, a client should have enough context to provide descriptive error message.

The same notation as in is used here. A Guide To The Kafka Protocol

Metadata Schema (Voted and Adopted in 0.10.0.0)

Metadata Request (version 1)

MetadataRequest => [topics]

Stays the same as version 0 however behavior changes.
In version 0 there was no way to request no topics, and and empty list signified all topics.
In version 1 a null topics list (size -1 on the wire) will indicate that a user wants topic metadata. Compared to an empty list (size 0) which indicates ALL
metadata for topics should be returned. NO

Metadata Response (version 1)

MetadataResponse => [brokers] controllerId [topic_metadata]
 brokers => node_id host port rack
 node_id => INT32
 host => STRING
 port => INT32
 rack => NULLABLE_STRING
 controllerId => INT32
 topic_metadata => topic_error_code topic is_internal [partition_metadata]
 topic_error_code => INT16
 topic => STRING
 is_internal => BOOLEAN
 partition_metadata => partition_error_code partition_id leader [replicas] [isr]
 partition_error_code => INT16
 partition_id => INT32
 leader => INT32
 replicas => INT32
 isr => INT32

Adds rack, controller_id, and is_internal to the version 0 response.

https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol

1.
2.

3.

4.

5.

6.

7.
a.
b.

The behavior of the replicas and isr arrays will be changed in order to support the admin tools, and better represent the state of the cluster:

In version 0, if a broker is down the replicas and isr array will omit the brokers entry and add a REPLICA_NOT_AVAILABLE error code.
In version 1, no error code will be set and a the broker id will be included in the replicas and isr array.

Note: A user can still detect if the replica is not available, by checking if the broker is in the returned broker list.

Topic Admin Schema

Create Topics Request (): (Voted and Committed for 0.10.1.0)KAFKA-2945

CreateTopics Request (Version: 0) => [create_topic_requests] timeout
 create_topic_requests => topic replication_factor num_partitions
[replica_assignment] [configs]
 topic => STRING
 => INT32num_partitions
 replication_factor => INT16
 replica_assignment => partition_id [replicas]
 partition_id => INT32
 replicas => INT32
 configs => config_key config_value
 config_key => STRING
 config_value => STRING
 timeout => INT32

 is a batch request to initiate topic creation with either predefined or automatic replica assignment and optionally topic CreateTopicsRequest

configuration.

Request semantics:

Must be sent to the controller broker
If there are multiple instructions for the same topic in one request an InvalidRequestException will be logged on the broker and a single error code
for that topic will be returned to the client

This is because the list of topics is modeled server side as a map with TopicName as the key
The principal must be authorized to the "Create" Operation on the "Cluster" resource to create topics.

Unauthorized requests will receive a ClusterAuthorizationException
Only one from replication_factor can be defined in one instruction. ReplicaAssignment or (+ num_partitions),

If both parameters are specified an InvalidRequestException will be logged on the broker and an error code for that topic will be returned
to the client
In the case is defined number of partitions and replicas will be calculated from the supplied . ReplicaAssignment replica_assignment
In the case of defined (+ replication_factor) replica assignment will be automatically generated by the server.num_partitions
One or the other must be defined. The existing broker side auto create defaults will not be used (default.replication.factor, num.

implementation can have defaults for these options when generating the messages.partitions). The client
The first replica in [replicas] is assumed to be the preferred leader. This matches current behavior elsewhere.

Setting a timeout > 0 will allow the request to block until the topic metadata is "complete" on the controller node.
Complete means the local topic metadata cache been completely populated and all partitions have leaders

The topic metadata is updated when the controller sends out update metadata requests to the brokers
If a timeout error occurs, the topic could still be created successfully at a later time. Its up to the client to query for the state at that point.

Setting a timeout <= 0 will validate arguments and trigger the create topics and return immediately.
This is essentially the fully asynchronous mode we have in the Zookeeper tools today.
The error code in the response will either contain an argument validation exception or a timeout exception. If you receive a timeout
exception, because you asked for 0 timeout, you can assume the message was valid and the topic creation was triggered.

The request is not transactional.
If an error occurs on one topic, the others could still be created.
Errors are reported independently.

QA:

Why is a batch request?CreateTopicsRequest
Scenarios where tools or admins want to create many topics should be able to with fewer requests
Example: MirrorMaker may want to create the topics downstream

What happens if some topics error immediately? Will it return immediately?
The request will block until all topics have either been created, errors, or the timeout has been hit
There is no "short circuiting" where 1 error stops the other topics from being created

Why implement "partial blocking" instead of fully async or fully consistent?
See Cluster Consistent Blocking below

Why require the request to go to the controller?

The controller is responsible for the cluster metadata and its propagation

See belowRequest Forwarding

Create Topics Response

https://issues.apache.org/jira/browse/KAFKA-2945

1.

1.
2.

3.
4.

5.

6.

7.

8.
a.
b.

CreateTopics Response (Version: 0) => [topic_error_codes]
 topic_error_codes => topic error_code
 topic => STRING
 error_code => INT16

CreateTopicsResponse contains a map between topic and topic creation result error code (see). New Protocol Errors

Response semantics:

When a request hits the timeout, the topics that are not "complete" will have the TimeoutException error code.
The topics that did complete successfully with have no error.

Delete Topics Request (KAFKA-2946): (Voted and Planned for 0.10.1.0)

DeleteTopics Request (Version: 0) => [topics] timeout
 topics => STRING
 timeout => INT32

 is a batch request to initiate topic deletion.DeleteTopicsRequest

Request semantics:

Must be sent to the controller broker
If there are multiple instructions for the same topic in one request the extra request will be ingnored

This is because the list of topics is modeled server side as a set
Multiple deletes results in the same end goal, so handling this error for the user should be okay

When requesting to delete a topic that does not exist, a an InvalidTopic error will be returned for that topic.
When requesting to delete a topic that is already marked for deletion, the request will wait and up to the timeout until the delete is "complete"
return as usual.

This is to avoid errors due to concurrent delete requests. The end result is the same, the topic is deleted.
The principal must be authorized to the "Delete" Operation on the "Topic" resource to delete the topic.

Unauthorized requests will receive a TopicAuthorizationException if they are authorized to the "Describe" Operation on the "Topic"
resource
Otherwise they will receive an InvalidTopicException as if the topic does not exist.

Setting a timeout > 0 will allow the request to block until the delete is "complete" on the controller node.
Complete means the local topic metadata cache no longer contains the topic

The topic metadata is updated when the controller sends out update metadata requests to the brokers
If a timeout error occurs, the topic could still be deleted successfully at a later time. Its up to the client to query for the state at that point.

Setting a timeout <= 0 will validate arguments and trigger the delete topics and return immediately.
This is essentially the fully asynchronous mode we have in the Zookeeper tools today.
The error code in the response will either contain an argument validation exception or a timeout exception. If you receive a timeout
exception, because you asked for 0 timeout, you can assume the message was valid and the topic deletion was triggered.

The request is not transactional.
If an error occurs on one topic, the others could still be deleted.
Errors are reported independently.

QA:

Why is DeleteTopicsRequest a batch request?
Scenarios where tools or admins want to delete many topics should be able to with fewer requests
Example: Removing all cluster topics

What happens if some topics error immediately? Will it return immediately?
The request will block until all topics have either been deleted, errors, or the timeout has been hit
There is no "short circuiting" where 1 error stops the other topics from being deleted

Why have a timeout at all? Deletes could take a while?
True some deletes may take a while or never finish, however some admin tools may want extended blocking regardless.
If you don't want any blocking setting a timeout of 0 works.
Future changes may make deletes much faster. See the section above.Follow Up Changes

Why implement "partial blocking" instead of fully async or fully consistent?
See Cluster Consistent Blocking below

Why require the request to go to the controller?
The controller is responsible for the cluster metadata and its propagation
See belowRequest Forwarding

Delete Topics Response

DeleteTopics Response (Version: 0) => [topic_error_codes]
 topic_error_codes => topic error_code
 topic => STRING
 error_code => INT16

DeleteTopicsResponse contains a map between topic and topic creation result error code (see). New Protocol Errors

https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations#KIP-4-Commandlineandcentralizedadministrativeoperations-NewProtocolErrors
https://issues.apache.org/jira/browse/KAFKA-2946
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations#KIP-4-Commandlineandcentralizedadministrativeoperations-NewProtocolErrors

1.

1.
2.
3.
4.

5.

1.
2.

3.
a.

b.

Response semantics:

When a request hits the timeout, the topics that are not "complete" will have the TimeoutException error code.
The topics that did complete successfully with have no error.

Alter Topics Request
This request/response is a bit more complicated and less critical than some others. Therefore, It will be addressed toward the end of KIP-4.

ACL Admin Schema ()KAFKA-3266

Note: Some of this work/code overlaps with " ". KIP-4 does not change the Authorizer interface at all, KIP-50 - Move Authorizer to o.a.k.common package
but does provide java objects in "org.apache.kafka.common.security.auth" to be used in the protocol request/response classes. It also provides
translations between the Java and Scala versions for server side compatibility with the Authorizer interface.

List ACLs Request

ListAcls Request (Version: 0) => principal resource
 principal => NULLABLE_STRING
 resource => resource_type resource_name
 resource_type => INT8
 resource_name => STRING

Request semantics:

Can be sent to any broker
If a non-null principal is provided the returned ACLs will be filtered by that principal, otherwise ACLs for all principals will be listed.
If a resource with a resource_type != -1 is provided ACLs will be filtered by that resource, otherwise ACLs for all resources will be listed.
Any principal can list their own ACLs where the permission type is "Allow", Otherwise the principal must be authorized to the "All" Operation on
the "Cluster" resource to list ACLs.

Unauthorized requests will receive a ClusterAuthorizationException
This avoids adding a new operation that an existing authorizer implementation may not be aware of.
This can be reviewed and further refined/restricted as a follow up ACLs review after this KIP. See .Follow Up Changes

Requesting a resource or principal that does not have any ACLs will not result in an error, instead empty response list is returned

List ACLs Response

ListAcls Response (Version: 0) => [responses] error_code
 responses => resource [acls]
 resource => resource_type resource_name
 resource_type => INT8
 resource_name => STRING
 acls => acl_principal acl_permission_type acl_host acl_operation
 acl_principal => STRING
 acl_permission_type => INT8
 acl_host => STRING
 acl_operation => INT8
 error_code => INT16

Alter ACLs Request

AlterAcls Request (Version: 0) => [requests]
 requests => resource [actions]
 resource => resource_type resource_name
 resource_type => INT8
 resource_name => STRING
 actions => action acl
 action => INT8
 acl => acl_principal acl_permission_type acl_host acl_operation
 acl_principal => STRING
 acl_permission_type => INT8
 acl_host => STRING
 acl_operation => INT8

Request semantics:

Must be sent to the controller broker
If there are multiple instructions for the same resource in one request an InvalidRequestException will be logged on the broker and a single error
code for that resource will be returned to the client

This is because the list of requests is modeled server side as a map with resource as the key
ACLs with a delete action will be processed first and the add action second.

This is to prevent confusion about sort order and final state when a batch message is sent.

https://issues.apache.org/jira/browse/KAFKA-3266
https://cwiki.apache.org/confluence/display/KAFKA/KIP-50+-+Move+Authorizer+to+o.a.k.common+package

3.

b.
c.

4.
a.
b.

5.

1.
2.
3.

a.
b.
c.

4.
5.

1.
a.

2.
a.

b.

If an add request was processed first, it could be deleted right after.
Grouping ACLs by their action allows batching requests to the authorizer via the Authorizer.addAcls and Authorizer.removeAcls calls.

The request is not transactional. One failure wont stop others from running.
If an error occurs on one action, the others could still be run.
Errors are reported independently.

The principal must be authorized to the "All" Operation on the "Cluster" resource to alter ACLs.
Unauthorized requests will receive a ClusterAuthorizationException
This avoids adding a new operation that an existing authorizer implementation may not be aware of.
This can be reviewed and further refined/restricted as a follow up ACLs review after this KIP. See .Follow Up Changes

QA:

Why doesn't this request have a timeout and implement any blocking like the CreateTopicsRequest?
The Authorizer implementation is synchronous and exposes no details about propagating the ACLs to other nodes.
The best we can do in the existing implementation is call Authorizer.addAcls and Authorizer.removeAcls and hope the underlying
implementation handles the rest.

What happens if there is an error in the Authorizer?
Currently the best we can do is log the error broker side and return a generic exception because there are no "standard" exceptions
defined in the Authorizer interface to provide a more clear code
KIP-50 is tracking adding the standard exceptions
The Authorizer interface also provides no feedback about individual ACLs when added or deleted in a group

Authorizer.addAcls is a void function, the best we can do is return an error for all ACLs and let the user check the current state
by listing the ACLs
Autohrizer.removeAcls is a boolean function, the best we can do is return an error for all ACLs and let the user check the
current state by listing the ACLs
Behavior here could vary drastically between implementations
I suggest this be addressed in KIP-50 as well, though it has some compatibility concerns.

Why require the request to go to the controller?
The controller is responsible for the cluster metadata and its propagation
This ensures one instance of the Authorizer sees all the changes and reduces concurrency issues, especially because the Authorizer
interface exposes no details about propagating the ACLs to other nodes.
See belowRequest Forwarding

Alter ACLs Response

AlterAcls Response (Version: 0) => [responses]
 responses => resource [results]
 resource => resource_type resource_name
 resource_type => INT8
 resource_name => STRING
 results => action acl error_code
 action => INT8
 acl => acl_principal acl_permission_type acl_host acl_operation
 acl_principal => STRING
 acl_permission_type => INT8
 acl_host => STRING
 acl_operation => INT8
 error_code => INT16

2. Server-side Admin Request handlers

At the highest level, admin requests will be handled on the brokers the same way that all message types are. However, because admin messages modify
cluster metadata they should be handled by the controller. This allows the controller to propagate the changes to the rest of the cluster. However, because
the messages need to be handled by the controller does not necessarily mean they need to be sent directly to the controller. A message forwarding
mechanism can be used to forward the message from any broker to the correct broker for handling.

Because supporting all of this is quite the undertaking I will describe the "ideal functionality" and then the "intermediate functionality" that gets us some
basic administrative support quickly while working towards the optimal state.

Ideal Functionality:

A client sends an admin request to brokerany
The admin request is forwarded to the required broker (likely the controller)
The request is handled and the server blocks until a timeout is reached or the requested operation is completed (failure or success)

An operation is considered complete/successful when . all required nodes have the statecorrect/current
Immediate follow up requests to will succeed.any broker
Requests that timeout may still be completed after the timeout. The users would need to poll to check the state.

The response is generated and forwarded back to the broker that received the request.
A response is sent back to the client.

Intermediate Functionality:

A client sends an admin requests to broker. requests can still go to broker. write the controller Read any
As a follow up request forwarding can be added transparently. (see below)

The request is handled and the server blocks until a timeout is reached or the requested operation is completed (failure or success)
An operation is considered complete/successful when the controller node has the correct/current state.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-50+-+Move+Authorizer+to+o.a.k.common+package#KIP-50-MoveAuthorizertoo.a.k.commonpackage-AddexceptionsrelatedtoAuthorizer.
https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations#KIP-4-Commandlineandcentralizedadministrativeoperations-request

2.

b.

c.
3.

Immediate follow up requests to will succeed. Others (not to the controller) are likely to succeed or cause a retriable the controller
exception that would eventually succeed.
Requests that timeout may still be completed after the timeout. The users would need to poll to check the state.

A response is sent back to the client.

The ideal functionality has 2 features that are more challenging initially. For that reason those features will be removed from the initial changes, but will be
tracked as follow up improvements. However, this intermediate solution should allow for a relatively transparent transition to the ideal functionality.

: Request Forwarding KAFKA-1912

Request forwarding is relevant to any message the needs to be sent to the "correct" broker (ex: partition leader, group coordinator, etc). Though at first it
may seam simple it has many technicall challenges that need to be decided in regards to connections, failure, retries, etc. Today, we depend on the client

to choose the correct broker and clients that want to utilize the cluster "optimally" would likely continue to do so. For those reasons it can be handled it can

be handled generically as an independent feature.

Cluster Consistent Blocking:

Blocking an admin request until the entire cluster is aware of the correct/current state is difficult based on Kafka's current approach for propagating
metadata. This approach varies based on the the metadata changing.

Topic metadata changes are propagated via UpdateMetadata and LeaderAndIsr requests
Config changes are propagated via zookeeper and listeners
ACL changes depend on the implementation of the Authorizer interface

The default SimpleACLAuthorizer uses zookeeper and listeners

Though all of these mechanisms are different, they are all commonly "eventually consistent". None of the mechanisms, as currently implemented, will block
until the metadata has been propagated successfully. Changing this behavior would require a large amount of change to the KafkaController, additional
inter-broker messages, and potentially a change to the Authorizer interface. These are are all changes that should not block the implementation of KIP-4.

The intermediate changes in KIP-4 should allow an easy transition to "complete blocking" when the work can be done. This is supported by providing optio
 local blocking in the mean time. This local blocking only blocks until the local state on the controller is correct. We will still provide a polling mechanism nal

for users that do not want to block at all. A polling mechanism is required in the optimal implementation too because users still need a way to check state
after a timeout occurs because operations like "create topic" are not transactional. Local blocking has the added benefit of avoiding wasted poll requests to
other brokers when its impossible for the request to be completed. If the controllers state is not correct, then the other brokers cant be either. Clients who
don't want to validate the entire cluster state is correct can block on the controller and avoid polling all together with reasonable confidence that though
they may get a retriable error on follow up requests, the requested change was successful and the cluster will be accurate eventually.

Because we already add a timeout field to the requests wire protocols, changing the behavior to block until the cluster is consistent in the future would not
require a protocol change. Though the version could be bumped to indicate a behavior change.

Compatibility, Deprecation, and Migration Plan

Rejected Alternatives

If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is
to motivate why the design is the way it is and not some other way.

TopicMetadataRequest/Response: After some debate we decided not to evolve the TopicMetadataResponse
to remove the ISR field (which currently can return incorrect information). There is a use-case for this in
KAFKA-2225, so we will treat this a bug and fix it going forward. See KAFKA-1367 for more details

https://issues.apache.org/jira/browse/KAFKA-1912

	KIP-4 - Command line and centralized administrative operations

