
Purgatory Redesign Proposal

Introduction
Kafka implements several request types that cannot immediately be answered with a response. Examples:

A produce request with acks=all cannot be considered complete until all replicas have acknowledged the write and we can guarantee it will not be 
lost if the leader fails.
A fetch request with min.bytes=1 won't be answered until there is at least one new byte of data for the consumer to consume. This allows a "long 
poll" so that the consumer need not busy wait checking for new data to arrive.

These requests are considered complete when either (a) the criteria they requested is complete or (b) some timeout occurs.

We intend to expand the use of this delayed request facility for various additional purposes including partition assignment and potentially quota 
enforcement.

The number of these asynchronous operations in flight at any time scales with the number of connections, which for Kafka is often tens of thousands.

A naive implementation of these would simply block the thread on the criteria, but this would not scale to the high number of in flight requests Kafka has.

The current approach uses a data structure called the "request purgatory". The purgatory holds any request that hasn't yet met its criteria to succeed but 
also hasn't yet resulted in an error. This structure holds onto these uncompleted requests and allows non-blocking event-based generation of the 
responses. This approach is obviously better than having a thread per in-flight request but our implementation of the data structure that accomplishes this 
has a number of deficiencies. The goal of this proposal is to improve the efficiency of this data structure.

Current Design
The  consists of a timeout timer and a hash map of watcher lists for event driven processing. A request is put into a purgatory when it is request purgatory
not immediately satisfiable because of unmet conditions. A request in the purgatory is completed later when the conditions are met or is forced to be 
completed (timeout) when it passed beyond the time specified in the timeout parameter of the request. Currently (0.8.x) it uses Java   to DelayQueue
implement the timer.

When a request is completed, the request is not deleted from the timer or watcher lists immediately. Instead, completed requests are deleted as they were 
found during condition checking. When the deletion does not keep up, the server may exhaust JVM heap and cause . To alleviate the OutOfMemoryError
situation, the reaper thread purges completed requests from the purgatory when the number of requests in the purgatory (including both pending or 
completed requests) exceeds the configured number. The purge operation scans the timer queue and all watcher lists to find completed requests and 
deletes them.

By setting this configuration parameter low, the server can virtually avoid the memory problem. However, the server must pay a significant performance 
penalty if it scans all lists too frequently.

New Design
The goal of the new design is to allow immediate deletion of a completed request and reduce the load of expensive purge process significantly. It requires 
cross referencing of entries in the timer and the requests. Also it is strongly desired to have O(1) insert/delete cost since insert/delete operation happens 
for each request/completion.

To satisfy these requirements, we propose a new purgatory implementation based on .Hierarchical Timing Wheels

Hierarchical Timing Wheel
A simple timing wheel is a circular list of buckets of timer tasks. Let  be the time unit. A timing wheel with size  has  buckets and can hold timer tasks in u n n

 time interval. Each bucket holds timer tasks that fall into the corresponding time range. At the beginning, the first bucket holds tasks for , the n * u [0, u)
second bucket holds tasks for , …, the n-th bucket for . Every interval of time unit , the timer ticks and moved to the next bucket [u, 2u) [u * (n -1), u * n) u
then expire all timer tasks in it. So, the timer never insert a task into the bucket for the current time since it is already expired. The timer immediately runs 
the expired task. The emptied bucket is then available for the next round, so if the current bucket is for the time , it becomes the bucket for t [t + u * n, t + (n 

 after a tick. + 1) * u) A timing wheel has O(1) cost for insert/delete (start-timer/stop-timer) whereas priority queue based timers, such as java.util.concurrent.
 and , have O(log n) insert/delete cost.DelayQueue java.util.Timer

A major drawback of a simple timing wheel is that it assumes that a timer request is within the time interval of  from the current time. If a timer request n * u
is out of this interval, it is an overflow. A hierarchical timing wheel deals with such overflows. It is a hierarchically organized timing wheels. The lowest level 

has the finest time resolution. As moving up the hierarchy, time resolutions become coarser. If the resolution of a wheel at one level is  and the size is , u n
the resolution of the next level should be  .  At each leveln * u  overflows are delegated to the wheel in one level higher. When the wheel in the higher level 
ticks, it reinsert timer tasks to the lower level. An overflow wheel can be created on-demand. When a bucket in an overflow bucket expires, all tasks in it 

are reinserted into the timer recursively. The tasks are then moved to the finer grain wheels or be executed. The insert (start-timer) cost is O(m) where m is 
the number of wheels, which is usually very small compared to the number of requests in the system, and the delete (stop-timer) cost is still O(1).

Doubly Linked List for Buckets in Timing Wheels

https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=34839465
http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf


In this design, we propose to use our own implementation of doubly linked list for the buckets in a timing wheel. The advantage of doubly linked list that it 
allows O(1) insert/delete of a list item if we have access link cells in a list.
A timer task saves a link cell in itself when enqueued to a timer queue. When a task is completed or canceled, the list is updated using the link cell saved 
in the task itself. 

Driving Clock using DelayQueue
A simple implementation may use a thread that wakes up every unit time and do the ticking, which checks if there is any task in the bucket. This can be 
wasteful if requests are sparse. We want the thread to wake up only when when there is a non-empty bucket to expire. We will do so by using java.util.

 similarly to the current implementation, but we will enqueue task buckets instead of individual tasks. This design has a concurrent.DelayQueue
performance advantage. The number of items in  is capped by the number of buckets, which is usually much smaller than the number of DelayQueue
tasks, thus the number of offer/poll operations to the priority queue inside DelayQueue will be significantly smaller.

Purge of Watcher Lists

In the current implementation, the purge operation of watcher lists is triggered by the total size if the watcher lists. The problem is that the watcher lists may 
exceed the threshold even when there isn't many requests to purge. When this happens it increases the CPU load a lot. Ideally, the purge operation 
should be triggered by the number of completed requests the watcher lists.

In the new design, a completed request is removed from the timer queue immediately with O(1) cost. It means that the number of requests in the timer 
queue is the number of pending requests exactly at any time. So, if we know the total number of distinct requests in the purgatory, which includes the sum 
of the number of pending request and the numbers completed but still watched requests, we can avoid unnecessary purge operations. It is not trivial to 
keep track of the exact number of distinct requests in the purgatory because a request may or my not be watched. In the new design, we estimate the total 
number of requests in the purgatory rather than trying to maintain the exactly number.

The estimated number of requests are maintained as follows. The estimated total number of requests, , is incremented whenever a new request is E
watched. Before starting the purge operation, we reset the estimated total number of requests to the size of timer queue. If no requests are added to the 
purgatory during purge,  is the correct number of requests after purge. If some requests are added to the purgatory during purge,  is incremented to E E E + 

 This may be an overestimation because it is possible that some of the new requests are completed and remove the number of newly watched requests.
from the watcher lists during the purge operation. We expect the chance of overestimation and an amount of overestimation are small.

Parameters
the tick size (the minimum time unit)
the wheel size (the number of buckets per wheel)

Benchmark
We compared the enqueue performance of two purgatory implementation, the current implementation and the proposed new implementation. This is a 
micro benchmark. It measures the purgatory enqueue performance. The purgatory was separated from the rest of the system and also uses a fake request 
which does nothing useful. So, the throughput of the purgatory in a real system may be much lower than the number shown by the test.

In the test, the intervals of the requests are assumed to follow the exponential distribution. Each request takes a time drawn from a log-normal distribution. 
By adjusting the shape of the log-normal distribution, we can test different timeout rate.

The tick size is 1ms and the wheel size is 20. The timeout was set to 200ms. The data size of a request was 100 bytes. For a low timeout rate case, we 
chose 75percentile = 60ms and 50percentile = 20. And for a high timeout rate case, we chose 75percentile = 400ms and 50percentile = 200ms. Total 1 
million requests are enqueued in each run.

Requests are actively completed by a separate thread. Requests that are supposed to be completed before timeout are enqueued to another DelayQueue. 
And a separate thread keeps polling and completes them. There is no guarantee of accuracy in terms of actual completion time.

The JVM heap size is set to 200m to reproduce a memory tight situation.

The result shows a dramatic difference in a high enqueue rate area. As the target rate increases, both implementations keep up with the requests initially. 
However, in low timeout scenario the old implementation was saturated around 40000 RPS (request per second), whereas the proposed implementation 
didn't show any significant performance degradation, and in high timeout scenario the old implementation was saturated around 25000 RPS, whereas the 
proposed implementation was saturated 105000 RPS in this benchmark.



CPU usage is significantly better in the new implementation.



Finally, we measured total GC time (milliseconds) for ParNew collection and CMS collection. There isn't much difference in the old implementation and the 
new implementation in the region of enqueue rate that the old implementation can sustain.



 

 

Summary
In the new design, we use Hierarchical Timing Wheels for the timeout timer and DelayQueue of timer buckets to advance the clock on demand. Completed 
requests are removed from the timer queue immediately with O(1) cost. The buckets remain in the delay queue, however, the number of buckets is 
bounded. And, in a healthy system, most of the requests are satisfied before timeout, and many of the buckets become empty before pulled out of the 
delay queue. Thus, the timer should rarely have the buckets of the lower interval. The advantage of this design is that the number of requests in the timer 
queue is the number of pending requests exactly at any time. This allows us to estimate the number of requests need to be purged. We can avoid 
unnecessary purge operation of the watcher lists. As the result we achieve a higher scalability in terms of request rate with much better CPU usage.



 


	Purgatory Redesign Proposal

