
Release Process
This document describes how to release Apache Kafka from trunk.

It is a work in progress and should be refined by the (RM) as they come across aspects of the release process not yet documented here.Release Manager

NOTE: For the purpose of illustration, this document assumes that the version being released is 0.10.0.0 and the following development version will
become 0.10.1.0.

Prerequisites
Cut Branches
Monitor Tests
Create Release Artifacts

Create Docker Artifact (For versions >= 3.7.0)
Website update process
Blog Post
Announce the RC
If need to roll a new RC
Update the Collaborators List
After the vote passes
After release
Useful Commands

Find all contributors for a release

Prerequisites

Send an email to offering to act as the Release Manager (RM). Look for previous emails with "I'd like to volunteer for the dev@kafka.apache.org
release manager". Sample format for a bug fix release is available below.

Hey folks,

I'd like to volunteer to be the release manager for a bug fix release of the
{{3.5 CHANGE ME!}} line. This will be the first bug fix release of this line and will be
version {{3.5.1 CHANGE ME!}}.

If no one has any objections, I will send out a release plan on {{DD-MM-YYYY}} that includes a list of all of
the fixes we are targeting for
{{3.5.1 CHANGE ME!}} along with a timeline.

Thanks!

Prepare release plan in the wiki, notifying the community the overall plan and goals for the release (For example:)Release Plan 0.10.0
Go over JIRA for the release and make sure that blockers are marked as blockers and non-blockers are non-blockers. This JIRA filter may be
handy:

project = KAFKA AND fixVersion = 0.10.0.0 AND resolution = Unresolved AND priority = blocker ORDER BY
due ASC, priority DESC, created ASC

It is important that between the time that the release plan is voted to the time when the release branch is created, no experimental or potentially
destabilizing work is checked into the trunk. While it is acceptable to introduce major changes, they must be thoroughly reviewed and have good
test coverage to ensure that the release branch does not start off being unstable. If necessary the RM can discuss if certain issues should be
fixed on the trunk in this time, and if so what is the gating criteria for accepting them.
RM must have gpg keys with the public key publicly available to validate the authenticity of the Apache Kafka release: If you haven't set up gpg
key, set up one using 4096 bit RSA (http://www.apache.org/dev/release-signing.html). Make sure that your public key is uploaded to one of the
public servers (http://www.apache.org/dev/release-signing.html#keyserver). Also, add your public key to https://github.com/apache/kafka-site/blob
/asf-site/KEYS

Once added, you will have to ask a PMC member to update the KEYS file in . Feel https://dist.apache.org/repos/dist/release/kafka/KEYS
free to create a thread in the mailing list.

RM's Apache account must have one of the RM's ssh public key so that the release script can use SFTP to upload artifacts to the RM's account
on . Verify by using ` `; if you get authentication failures, login to home.apache.org sftp <your-apache-id>@home.apache.org id.apache.org
and add your public ssh key to your Apache account. If you need a new ssh key, generate one with `ssh-keygen -t rsa -b 4096 -C

` and saving the key in ` , add the key locally with ` `,<your-apache-id>@apache.org ~/.ssh/apache_rsa` ssh-add ~/.ssh/apache_rsa
add the public SSH key (contents of ` `) to your account using , and verify you can connect with sftp ~/.ssh/apache_rsa.pub id.apache.org
(may require up to 10 minutes for account changes to synchronize). See .more detailed instructions

http://incubator.apache.org/guides/releasemanagement.html#glossary-release-manager
mailto:dev@kafka.apache.org
https://cwiki-test.apache.org/confluence/display/KAFKA/Release+Plan+0.10.0
http://www.apache.org/dev/release-signing.html
http://www.apache.org/dev/release-signing.html#keyserver
https://github.com/apache/kafka-site/blob/asf-site/KEYS
https://github.com/apache/kafka-site/blob/asf-site/KEYS
https://dist.apache.org/repos/dist/release/kafka/KEYS
https://home.apache.org/
https://id.apache.org/
https://id.apache.org/
https://www.apache.org/dev/new-committers-guide.html#ssh-setup

Make sure docs/documentation.html is referring to the next release and links and update docs/upgrade.html with upgrade instructions for next
release. For a bugfix release, make sure to at least bump the version number in the header in docs/upgrade.html. If this is a "Upgrading to ..."
major or minor release #, it's a good idea to make this change now. If you end up doing it after cutting branches, be sure the commit lands on
both trunk and your release branch. Note that this be done before generating any artifacts because these docs are part of the content that must
gets voted on.
Install the dependencies for the release scripts: or newer.pip install jira=2.0.0
Ensure you have configured SSH to pick up your key when connecting to apache.org domains. In ~/.ssh/config, add:

Host *.apache.org
IdentityFile ~/.ssh/<apache-ssh-key>

You will need to upload your maven credentials and for the release script by editing your `signatory credentials ~/.gradle/gradle.
` with:properties

~/.gradle/gradle.properties

mavenUrl=https://repository.apache.org/service/local/staging/deploy
/maven2

mavenUsername=your-apache-id
mavenPassword=your-apache-passwd
signing.keyId=your-gpgkeyId # <- needs to be the 8-letter key ID
signing.password=your-gpg-passphrase
signing.secretKeyRingFile=/Users/your-id/.gnupg/secring.gpg

If you don't already have a secret key ring under ~/.gnupg (which will be the case with GPG 2.1 and beyond), you will need to manually create it
with `gpg --export-secret-keys -o ~/.gnupg/secring.gpg`. Obviously, be careful not to publicly upload your passwords. You
should be editing the `gradle.properties` file under your home directory, not the one in Kafka itself.
Make sure your `~/.m2/settings.xml` is configured for pgp signing and uploading to the apache release maven:

~/.m2/settings.xml

<servers>
 <server>
 <id>apache.releases.https</id>
 <username>your-apache-id</username>
 <password>your-apache-passwd</password>
 </server>
 <server>
 <id>your-gpgkeyId</id>
 <passphrase>your-gpg-passphrase</passphrase>
 </server>
</servers>
<profiles>
 <profile>
 <id>gpg-signing</id>
 <properties>
 <gpg.keyname>your-gpgkeyId</gpg.keyname>
 <gpg.passphraseServerId>your-gpgkeyId</gpg.passphraseServerId>
 </properties>
 </profile>
</profiles>

You may also need to update some gnupgp configs:

echo "allow-loopback-pinentry" >> ~/.gnupg/gpg-agent.conf

echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf

echo RELOADAGENT | gpg-connect-agent

Cut Branches

https://github.com/apache/kafka/blob/2.8/docs/upgrade.html#L42
https://docs.gradle.org/current/userguide/signing_plugin.html#sec:signatory_credentials

Skip this section if you are releasing a bug fix version (e.g. 2.2.1).

Make sure you are working with a clean repo (i.e. identical to upstream - no changes in progress). If needed clone a fresh copy
git checkout trunk
Check that current HEAD points to commit on which you want to base new release branch. Checkout particular commit if not.
git branch 0.10.0
git push apache 0.10.0
Modify the version in trunk to bump to the next one (eg. "0.10.1.0-SNAPSHOT") in the following files:

docs/js/templateData.js
gradle.properties
kafka-merge-pr.py
streams/quickstart/java/pom.xml
streams/quickstart/java/src/main/resources/archetype-resources/pom.xml
streams/quickstart/pom.xml
tests/kafkatest/__init__.py
tests/kafkatest/version.py (do not add the new release version, it will only be added after the release is completed)

Commit and push to trunk in apache.
Check that the branch was correctly propagated to Apache using the webui: https://gitbox.apache.org/repos/asf?p=kafka.git
Update the to include the newly created branch (if it's not there already) in the section shown in the following screenshot. If Jenkins configuration
you don't have permission to create apache job, please ask Jun Rao to give you access.

Send email announcing the new branch:

To: dev@kafka.apache.org
Subject: New release branch 0.10.0

Hello Kafka developers and friends,

As promised, we now have a release branch for 0.10.0 release (with 0.10.0.0
as the version).
Trunk has been bumped to 0.10.1.0-SNAPSHOT.

I'll be going over the JIRAs to move every non-blocker from this release to
the next release.

From this point, most changes should go to trunk.
*Blockers (existing and new that we discover while testing the release)
will be double-committed. *Please discuss with your reviewer whether your
PR should go to trunk or to trunk+release so they can merge accordingly.

*Please help us test the release! *

Thanks!

$RM

Monitor Tests

In between the branch cut and the RC cut, it's good to set up and keep an eye on the tests.
At the time of RC publishing, you will be asked to ensure you get a green run of integration tests & system tests. Due to flakes, this isn't always possible -
so it's necessary to triage the tests & recognize what are flakes.

https://gitbox.apache.org/repos/asf?p=kafka.git
https://ci-builds.apache.org/job/Kafka/job/kafka/configure

The earlier you do this, the easier it'll be later - hence this paragraph suggests you set them up now after the branch cut & start monitoring.

The link for unit/integration tests: ` ` - e.g https://ci-builds.apache.org/job/Kafka/job/kafka/job/{MAJOR_RELEASE_VERSION}/ https://ci-builds.
apache.org/job/Kafka/job/kafka/job/3.7/
System tests: https://jenkins.confluent.io/job/system-test-kafka/job/3.7/<MAJOR_RELEASE_VERSION>/

Notable, this is hosted by Confluent.
If you, the RM, do not work for Confluent - contact someone from the company to set up the branch.
If you, the RM, do work for Confluent - set up the branch following the internal instructions in the wiki.

Create Release Artifacts

Until is complete, you will have to manually verify the binary

artifact's LICENSE file matches its own packaged dependencies. See that ticket for an example of how to do this.
Set environment variable ` to the remote you want to push to, e.g., (default is PUSH_REMOTE_NAME` export PUSH_REMOTE_NAME=origin apa

).che-github
Run the `release.py` script in the root of the kafka repository and follow the instructions. NOTE that if you are releasing a version prior to 1.0.x,
you need to have minor edits on the script to change the three-digits pattern checking to four-digits pattern.
This script will created a hidden directory called .release_work_dir. Don't delete this as you may need the contents later (for example the kafka-
stream-x.x.x-test.jar)
Troubleshooting:

If any step fails, make sure you have everything set up as described in the Prerequisites section and are using the correct passphrase
for each config. When in doubt, remove or comment out anything in your settings that is not specifically needed for the release – for
example, alternate profiles or unrelated servers, mirrors, etc in your ` ` or ` `~/.m2/settings.xml ~/.gradle/gradle.properties
Make sure you're running the script with Python3: sadly Python versions are not well managed especially on Macs, so you may want to
explicitly invoke it with $python3 release.py
Install any missing packages with , for example – if pip can't find this, verify it's looking in the right repo pip3 $pip3 install jira
by commenting out/removing any settings in your index-url ~/.pip/pip.conf
Try setting an explicit path for both Java8 and Java17, rather than relying on your JAVA_HOME since this may be modified in the
background by other applications (such as IDEs)

Create Docker Artifact (For versions >= 3.7.0)

Once you have executed release.py script, you'll be able to generate an RC docker image.
This covers details of each workflow. Refer to this for detailed examples and better understanding.document
In Github Actions of Apache Kafka repository () you'll find .here Docker Build Test Workflow
Click on run workflow and select the RC branch for the branch that this workkflow needs to run.

Provide the image type. Since you are creating an RC image for - the image type you want is .apache/kafka jvm
Provide the url to the RC kafka binary tarball (scala 2.13 version) - e.g `https://home.apache.org/{your_username}/{rc_tag}/kafka_2.13-

`. This url will be used to generate the docker image.3.7.0.tgz
Run workflow and wait for it to finish. Once it finishes go back to the actions page and click on the workflow again. You'll find the uploaded
artifacts. In case of jvm image type, they will be:

report_jvm.html (the docker image test report)
scan_report_jvm.txt (the docker image cve report).

Share the link to the pipeline and the above artifacts with the community in the RC voting email thread.
Next - create the RC docker image in apache/kafka. Go to the Github action .Build and Push Release Candidate Docker Image

Here image type and kafka url will be same as provided in previous workflow.
In addition - add the docker hub image name that needs to be pushed.

It will be apache/kafka:{rc_tag}. Here is comprised of release version and rc version. For example rc_tag apache/kafka:
 , can be the first RC docker image for 3.7.0 release.3.7.0-rc0

Ensure that the RC docker image is visible on .docker hub
Share the docker image with the community in the RC voting email thread

Website update process

Note: Unlike the Kafka sources (kafka repo), the content of the Apache Kafka website is backed by a separate git repository (kafka.apache.org kafka-site
repo). Today, any changes to the content and docs must be kept manually in sync between the two repositories.

We should improve the release script to include these steps. In the meantime, for new releases:

git clone git@github.com:apache/kafka-site.git
git checkout asf-site
Update the website content including docs:

The gradle target generates the Kafka website content including the Kafka documentation (with the exception of a few releaseTarGz
pages like , which are only tracked in the kafka-site repository). This build target also auto-generates the project-security.html
configuration docs of the Kafka broker/producer/consumer/etc. from their respective Java sources. The build output is stored in ./core
/build/distributions/kafka_2.13-2.8.0-site-docs.tgz.

 Unable to render Jira issues macro, execution

error.

https://github.com/apache/kafka/blob/trunk/docker/README.md
https://github.com/apache/kafka/actions
https://github.com/apache/kafka/actions/workflows/docker_build_and_test.yml
https://github.com/apache/kafka/actions/workflows/docker_rc_release.yml
https://hub.docker.com/r/apache/kafka/tags
https://github.com/apache/kafka-site
https://kafka.apache.org/
https://github.com/apache/kafka-site
https://github.com/apache/kafka-site
https://github.com/apache/kafka-site/blob/asf-site/project-security.html

Untar the file and rename the folder to (or, if the latter already exists, replace its contents). That's because the docs site-docs/ 28/
for a release are stored in a separate folder (e.g., for Kafka v2.7 and for Kafka v2.8), which ensures the Kafka website includes 27/ 28/
the documentation for the current and all past Kafka releases.

Update the javadocs:
Create the release Javadocs with the gradle target , with aggregatedJavadoc (`./gradlew aggregatedJavadoc`) on JDK 17
output under ../build/docs/javadoc/
Copy the folder to (i.e., the full path is). If this is bug fix release, do this after the vote has passed to avoid javadoc 28/ 28/javadoc/
showing an unreleased version number in the published javadocs.

Note that this will upload the javadocs with a version named . Once you have an RC cut with {RELEASE_VERSION}-SNAPSHOT
a git tag, check out that git tag and re-generate the javadocs. That way it will not have the suffix anymore-SNAPSHOT

Commit & push

Blog Post

For minor and major releases, consider writing a blog. Since the Apache blogs platform is now sunset, we've added a to the Kafka blog section
website. Unfortunately this requires writing it in HTML, see the file in kafka-site.blog.html
It's nice to thank as many people as we can identify. Please use " " script to generate the list of contributors. Find all contributors
Consider incorporating any suggestions from the dev thread until release is announced

Announce the RC

Send an email announcing the release candidate.

If need to roll a new RC

Go to , find the uploaded artifacts and drop it.https://repository.apache.org/#stagingRepositories
Go back to the beginning - don't forget to bump the RC number.

Update the Collaborators List

While waiting for the vote to pass, this is a good time to (see for reference until the update the Collaborators https://github.com/apache/kafka-site/pull/510
site update is published).

The process is documented in . If we complete that ticket, we can remove this

step from the release process.

After the vote passes

Remember: , 3 +1 from PMC members (committers are not enough!) and no -1.at least 3 days
Send a vote closing email:

To: dev@kafka.apache.org, kafka-clients@googlegroups.com, users@kafka.apache.org
Subject: [RESULTS] [VOTE] Release Kafka version 0.10.0.0

This vote passes with 7 +1 votes (3 bindings) and no 0 or -1 votes.

+1 votes
PMC Members:
* $Name
* $Name
* $Name

Committers:
* $Name
* $Name

Community:
* $Name
* $Name

0 votes

 Unable to render Jira issues macro, execution

error.

https://kafka.apache.org/blog
https://github.com/apache/kafka-site/blob/asf-site/blog.html
https://repository.apache.org/#stagingRepositories
https://kafka.apache.org/contributing
https://github.com/apache/kafka-site/pull/510
https://www.apache.org/legal/release-policy.html#release-approval

1.

2.

3.

4.

* No votes

-1 votes
* No votes

Vote thread:
http://markmail.org/message/faioizetvcils2zo

I'll continue with the release process and the release announcement will follow in the next few days.

$RM

Create a new tag for the release, on the same commit as the voted rc tag and push it:
Use "git show 0.10.0.0-rc6" to find the commit hash of the tag
git tag -a 0.10.0.0 <commit hash>
When asked to provide a message for the new tag, to preserve uniformity in release tags, add: Apache Kafka <version number> release.
For example: Apache Kafka 0.10.0.0 release
Run "git show 0.10.0.0" and confirm that the tag points to the correct commit hash.
git push apache 0.10.0.0

Merge the last version change / rc tag into the release branch and bump the version to 0.10.0.1-SNAPSHOT
git checkout 0.10.0
git merge 0.10.0.0-rc6
Update version on the branch to 0.10.0.1-SNAPSHOT in the following places:

docs/js/templateData.js
gradle.properties
kafka-merge-pr.py
streams/quickstart/java/pom.xml
streams/quickstart/java/src/main/resources/archetype-resources/pom.xml
streams/quickstart/pom.xml
tests/kafkatest/__init__.py (note: this version name can't follow the -SNAPSHOT convention due to python version naming
restrictions, instead update it to 0.10.0.1.dev0)
tests/kafkatest/version.py

Run "git status" and "git diff" and make sure that only the files above have changed with the intended changes. (For example, there's no .
release_work_dir/ from a previous RC generation).
git commit -a (the commit message could be "MINOR: Update 3.2 branch version to 3.2.1-SNAPSHOT")
git push apache 0.10.0

Upload all artifacts, release notes, and docs (can be found in the .release_work_dir created by the release.py script) to https://dist.apache.org
/repos/dist/release/kafka (a SVN repo, using Apache committer id/passwd).

Set your Apache username as environment variable

APACHE_USERNAME=<apache_username>

Create a directory for the release. Assuming the release is 0.10.0.0:

svn mkdir --username $APACHE_USERNAME -m "Making directory for 0.10.0.0" https://dist.apache.org
/repos/dist/release/kafka/0.10.0.0

Checkout the directory for the new release:

svn co --username $APACHE_USERNAME https://dist.apache.org/repos/dist/release/kafka/0.10.0.0 kafka-
release-0-10-0-0

copy the release artifacts from the latest RC (the ones which were in your home.apache.org directory) to the new release directory, but
 since we don't publish that anymore to exclude the `javadoc` directory https://dist.apache.org/repos/dist/release/kafka

cd kafka-release-0-10-0-0
note: there is a '~' sign in front of your APACHE_USERNAME
this step will take minutes
wget --no-parent --recursive --reject "javadoc/*" "https://home.apache.org/~$APACHE_USERNAME/kafka-
0.10.0.0-rc0/"
mv "home.apache.org/~$APACHE_USERNAME/kafka-0.10.0.0-rc0/*" .
rm -rf home.apache.org/
rm index.html*

Note that only PMC members can upload to the `release` directory. If the RM is not in the PMC, they can upload the files to https://dist.
instead and ask a PMC member to move them to the release directory.apache.org/repos/dist/dev/kafka

https://dist.apache.org/repos/dist/release/kafka
https://dist.apache.org/repos/dist/release/kafka
https://dist.apache.org/repos/dist/release/kafka
https://dist.apache.org/repos/dist/dev/kafka
https://dist.apache.org/repos/dist/dev/kafka

4.

5.

6.

Add the files to SVN

svn --username $APACHE_USERNAME add *

Commit the artifacts to subversion

svn commit --username $APACHE_USERNAME -m "Release 0.10.0.0"

For PMC members only - If RM is a committer, you can move the artifacts from dev repo to release repo with the following commands. If RM is a
PMC member, this step can be ignored.

Set your env variable for apache username

APACHE_USERNAME=<apache_username>

Create the directory for release in release repo

svn mkdir --username $APACHE_USERNAME -m "Making directory for 0.10.0.0" https://dist.apache.org/repos
/dist/release/kafka/0.10.0.0

Checkout the directory for the new release

svn co --username $APACHE_USERNAME https://dist.apache.org/repos/dist/release/kafka/0.10.0.0 kafka-
release-0-10-0-0

Copy the artifacts from dev repo to local

svn co --username $APACHE_USERNAME https://dist.apache.org/repos/dist/dev/kafka/0.10.0.0 kafka-dev-0-10-
0-0

Move files from one folder into another

mv kafka-dev-0-10-0-0/* kafka-release-0-10-0-0

Add files to SVN and commit

cd kafka-release-0-10-0-0

svn --username $APACHE_USERNAME add *

svn commit --username $APACHE_USERNAME -m "Release 0.10.0.0"

Update the PGP KEYS

cd

svn co --username $APACHE_USERNAME --depth empty https://dist.apache.org/repos/dist/release/kafka/
kafka-pgp-0-10-0-0

cd kafka-pgp-0-10-0-0

svn update KEYS

wget http://kafka.apache.org/KEYS

mv KEYS.1 KEYS

svn commit -m "Update PGP keys"

Make sure the KEYS file in the svn repo includes the committer who signed the release.
The KEYS must be in and not just in .https://dist.apache.org/repos/dist/release/kafka/KEYS http://kafka.apache.org/KEYS
Go to , find the uploaded artifacts and release them (this will push the artifacts to maven https://repository.apache.org/#stagingRepositories
central). You will be asked to provide a description on a pop-up menu that will allow you to add (in previous descriptions Apache Kafka 0.10.0.0
you'd normally have appended the RC identifier as well).

https://dist.apache.org/repos/dist/release/kafka/KEYS
http://kafka.apache.org/KEYS
https://repository.apache.org/#stagingRepositories

Wait for about a day for the artifacts to show up in apache mirror (,) and maven central (or).releases public group mvnrepository.com maven.org
Release Docker Image:-

Run github action.Promote Release Candidate Docker Image
Here the RC Docker image will be the rc docker image that got voted and approved. For example if got apache/kafka:3.7.0-rc1
voted and approved, it will be the RC docker image that needs to be used.
Promoted image will be the final release name. For 3.7.0 release it will be apache/kafka:3.7.0
Run the workflow and verify that the new docker image is visible on docker hub
If this is not a bug fix release, then ensure that you also release for tag. Which means you need to run the above pipeline again latest
and use promoted image as apache/kafka:latest

In trunk update the following files with the current release number. This is needed for a feature as well as a bug-fix release ()commit example
KAFKA-REPO-DIR/gradle/dependencies.gradle
KAFKA-REPO-DIR/tests/docker/Dockerfile
KAFKA-REPO-DIR/tests/kafkatest/version.py
KAFKA-REPO-DIR/vagrant/base.sh
Upload the new release and kafka-stream-x.x.x-test.jar (can be found in the .release_work_dir created by the release.py script) to the S3
bucket "kafka-packages". This is a S3 bucket owned by Confluent. If the RM is a committer from Confluent then follow the internal
documentation for getting credentials. If the RM is not a committer from Confluent, please ask a committer from Confluent to do this for
you.
Use the AWS console to upload the files in the bucket or the CLI if you have appropriate keys. Update these commands to use the
current release version. For example:

aws s3 cp .release_work_dir/<rc-version>/kafka_2.12-3.0.0.tgz s3://kafka-packages
aws s3 cp .release_work_dir/<rc-version>/kafka_2.13-3.0.0.tgz s3://kafka-packages
aws s3 cp .release_work_dir/kafka/streams/build/libs/kafka-streams-3.0.0-test.jar s3://kafka-packages
Make sure to update the permissions on AWS S3 so they are readable by everyone

$ aws s3api put-object-acl --bucket kafka-packages --key kafka_2.13-3.0.0.tgz --acl public-
read
$ aws s3api put-object-acl --bucket kafka-packages --key kafka_2.12-3.0.0.tgz --acl public-
read
$ aws s3api put-object-acl --bucket kafka-packages --key kafka-streams-3.0.0-test.jar --acl
public-read

Update the website:
git clone https://github.com/apache/kafka-site
git checkout asf-site
Verify that (in kafka-site repo) is referring to the correct release and links.documentation.html
Verify that (in kafka repo) is similarly set up correctly.docs/documentation.html
If it's a feature release:

Update files (e.g. documentation.html, protocol.html, quickstart.html, intro.html) to include the link for the new version (e.g. 0100
/documentation.html). The full list of files can be found by:

 git grep "should always link the latest" | grep -v '^[0-9]'
The command grep -v '^[0-9]' excludes per-release files (e.g. ./10/documentation/streams/upgrade-guide.html)
Verify that related html files (excluding per-release files) have been updated to use the new release version by doing
git grep -Irn -A1 "should always link the latest" | grep -v '^[0-9]'
and checking that the new feature version is used.
Update files (e.g documentation.html, streams/quickstart.html) from the previous release (e.g current release is 2.8 so update
files in the /27 folder) to change to . You can find '<!--//#include virtual="'... '<!--#include virtual="...
the files by running

 git grep '<!--//#include virtual='
from the directory of the previous feature release. This is an example of the changes that need to be made.kafka-site PR

Update downloads.html to include the new download links from mirrors and change last release to use archive. Also add a paragraph
with a brief feature introduction for the release.
git commit -am ".."
git push origin asf-site
Make sure the docs for the previous version are updated to display the "You're viewing documentation for an older version of Kafka"
banner. This means un-commenting the banner out in two places: the previous version's branch of the kafka repo, and the previous
version's directory in the kafka-site repo. See this commit for an example of which line displays this banner

Mark the version as released in Kafka JIRA (from JIRA administration panel, select versions and scroll mouse towards the end of the line for the
particular version. From the dropdown list, select release and set the date).

https://repository.apache.org/content/repositories/releases/org/apache/kafka/
https://repository.apache.org/content/groups/public/org/apache/kafka/
https://mvnrepository.com/artifact/org.apache.kafka
https://search.maven.org/search?q=org.apache.kafka
https://github.com/apache/kafka/actions/workflows/docker_promote.yml
https://hub.docker.com/r/apache/kafka/tags
https://github.com/apache/kafka/commit/354db26b954c1df7c8c83748c466768399209b8c
https://github.com/apache/kafka-site
https://github.com/apache/kafka-site/blob/asf-site/documentation.html
https://github.com/apache/kafka/blob/trunk/docs/documentation.html
https://github.com/apache/kafka-site/pull/307/files

Send out an announcement email.
The announcement email should be sent to , , , and announce@apache.org users@kafka.apache.org dev@kafka.apache.org kafka-
clients@googlegroups.com
You need to use your apache email address to send out the email (otherwise, it won't be delivered to announce@apache.org).

If you use gmail, you can configure it to send outbound mail from your apache address. Go to Settings Accounts and Import
Send mail as: , and use the config:
Server: Port: 587 (STARTTLS), 465 (SSL) User/Pass: {Your LDAP mail-relay.apache.org
credentials}
For other mail clients, see https://infra.apache.org/committer-email.html

You need to be subscribed to ` ` with your apache email address – otherwise it bounces back. Just kafka-clients@googlegroups.com
send a message from your apache email to and click `Join` in the confirmation emailkafka-clients+subscribe@googlegroups.com
Make sure to send the email as plain text, if there is any html (including basic hyperlinks) the email will bounce from announce@apache.

. For gmail, removing formatting might not be enough. Make sure you've selected the option "Plain text mode". org
Double check that all the links in the email and on the downloads page work.
Generate the release email:

Run `./release.py release-email` script in the root of the kafka repository and follow the instructions to generate the
announcement email template for the release to the mailing list.
Check and update the Scala versions, if necessary, in the release email.

Once the release is announced, the PMC member who committed the release artifacts to the SVN dist repository should add the release data to ht
 (they will get a notification asking them to do this after the svn commit).tps://reporter.apache.org/addrelease.html?kafka

PMC member should double check if older releases should be archived (cf.). http://www.apache.org/legal/release-policy.html#when-to-archive
This includes changing the relevant download links in the to use the archive link.site's `download.html`

Cf. and

For feature releases, file a JIRA for updating compatibility/upgrade system tests to test the newly released version. Example PRs:
Broker and clients: https://github.com/apache/kafka/pull/12210
Streams: https://github.com/apache/kafka/pull/12209

For feature releases, publish the blog post previously shared with the dev list.

After release

After releasing the new version, we need to update the versions in the following files.

gradle/dependencies.gradle
tests/docker/Dockerfile
vagrant/base.sh
tests/kafkatest/version.py (patch releases only update the latest version)

Here are some example PRs that update these files

https://github.com/apache/kafka/commit/354db26b954c1df7c8c83748c466768399209b8c
https://github.com/apache/kafka/commit/353141ed9294f11098984d137a3c244997405472
https://github.com/apache/kafka/commit/354c9ca0ce676a7c638da36e5174cf96a2b19533

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

mailto:announce@apache.org
mailto:users@kafka.apache.org
mailto:dev@kafka.apache.org
mailto:kafka-clients@googlegroups.com
mailto:kafka-clients@googlegroups.com
http://mail-relay.apache.org
https://infra.apache.org/committer-email.html
mailto:kafka-clients@googlegroups.com
mailto:kafka-clients+subscribe@googlegroups.com
mailto:announce@apache.org
mailto:announce@apache.org
https://reporter.apache.org/addrelease.html?kafka
https://reporter.apache.org/addrelease.html?kafka
http://www.apache.org/legal/release-policy.html#when-to-archive
https://github.com/apache/kafka-site/blob/asf-site/downloads.html
https://github.com/apache/kafka/pull/12210
https://github.com/apache/kafka/pull/12209
https://github.com/apache/kafka/commit/354db26b954c1df7c8c83748c466768399209b8c
https://github.com/apache/kafka/commit/353141ed9294f11098984d137a3c244997405472
https://github.com/apache/kafka/commit/354c9ca0ce676a7c638da36e5174cf96a2b19533

It may also be worth tackling the compatibility/upgrade system tests as mentioned above.

Please file Jira tickets to remind teams to update their system tests (eg – similar for others)https://issues.apache.org/jira/browse/KAFKA-15672

Useful Commands

Find all contributors for a release

The commands below assume that new version is 3.5.1 and last version is 3.5.

set variables

CURRENT_RELEASE_TAG=3.5.1
OLD_RELEASE_TAG=3.5.0

get list of contributors (commit authors and co-authors) sorted in alphabetical order and separated by comma

git shortlog -sn --group=author --group=trailer:co-authored-by --group=trailer:Reviewers --no-merges
${OLD_RELEASE_TAG}..${CURRENT_RELEASE_TAG} | cut -f2 | sort --ignore-case | uniq | sed -e ':a' -e '$!N;s/\n/, /;
ta' -e 's/,$//' -e 's/%$//'

get count of list of unique contributors

git shortlog -sn --group=author --group=trailer:co-authored-by --group=trailer:Reviewers --no-merges
${OLD_RELEASE_TAG}..${CURRENT_RELEASE_TAG} | cut -f2 | sort --ignore-case | uniq | wc -l

https://issues.apache.org/jira/browse/KAFKA-15672

	Release Process

