New consumer API change proposal

® APl and user requirement analysis
® Threading Model and Sync/Async Semantics
® Proposed Solution
© API Proposal
© Threading-Model Proposal
© Sync or Async, that's a question....
© Throwing Exceptions Or Not?

API and user requirement analysis

Kafka new consumer API analysis
This chart analyzes the Kafka new consumer interface for possible improvement.

e On the right, the proposed APIs of KafkaConsumer are listed with index and sync/async notes.

e On the left, an analysis table draws the following way:
o The first column lists all the possible type of requests that might be sent by a consumer.
o In the corresponding row for each type of request, potential user requirements from each request are listed in the order from low level use case to high level use case.
o In the upper-right corner of each use case, a method index from the APl list on the right is put there to indicate the supporting method(s)

e The red font means not supported by current API or the methods are yet to be added.

KafkaConsumer API List

Low Level High Level
user requirement user requirement
< > API Sync | Async
08 0210 : 02: 01: o1
: D : s : b : 0 | ConsumerRecords poll(timeout) Y
: ynamic : tatic : ynamic . .
FetchRequest _Odflffset d Partition : Partition : Topic Data : §§:;CS.:;:2|; void subscribe(topic)
rewindforwar Level Control Level Control : Stream : 1 void unsubscribe(topic) Y
T —q ____________ 'R i,id __________ 3 Y Confly 5 | void subscribe(partitions) v
OffsetCommitRequest User-provided Manual + Auto commit on Manual void unsubscribe(partitions)
offsets Commit . Partiionlevel : topic/partition Offset : Auto Offset 3 |F <OffsetMap> i(Callback v v
(! metadata) commit : level : Commit : Commit uture: setMap> commit(Callback)
__________ .__—___—___I—f—_________ﬁ f__________g_f Tttt Future<Void> commit
. : . us : 58, : 4 (OffsetAndMetadataMap, callback) Y Y
OffsetFetchRequest Arbitrary * committed :
(OffsetRequest) offsetsfelch by + offsets for st?t:fssg'?st{ggs : st?l:fssg’list:g;s i Don'tCare 5 | long position(partition) Y
time (incl. HW) : arbitrary part. P : P : 9 P P
__________ : T —ii__u : 18,12 6 | long committed(partition) Y
TopicMetadataRequest Arblt_raw : SLIbS(.:rIbVEd : Subsgr\tl‘ed) : ‘ - » » -
topics’ : topics' : topics’ : Getalltopics : Don'tcare 7 | List<PartitionInfo>partitionsFor(topic) Y
partitioninfo : partition info : partition info : :
____________ e e e mmmmmhemmmmmmmmmSmmmmmmmmmmmmmmmmm————— void seek(partition, offset)
: : : : 8 | void seekToBeginning(tp) Y
void seekToEnd(fj
ConsumerMetadataRequest Don't Care Don't Care Don't Care Don't Care Don't Care (tp)
9 | set<Topic> subscriptions() Y
: : : : 10 void pause(partition...) v
JoinGroupRequest Don'tCare @ Don'tCare - Don'tCare Don'tcare @ Don'tcare void resume(partition...)
: 11 | long offsetByTime(partition, timeMs) Y
: . : : 12 Map<String, List<PartitionInfo>> Y
HeartBeatRequest Don'tCare : DontCare : DontCare : Don'tCare @ Don'tCare listTopics()
Low Level High Level
user requirement user requirement

The chart above analyzes the new consumer API requirements by looking at the requirements that user might have for each request. We are trying to use

this chart to exhaustively list

1. All the functions consumer can possibly achieve.
2. All the potential user requirements

The goal is to have a clean and intuitive APIs design with good reasoning for each user requirement (each grid in the above chart).

Threading Model and Sync/Async Semantics

Currently new consumer follows a single threaded model. While it provides simplicity by saving some synchronization efforts, it is also enforces user to
care about the things that they don't need to care about. Several examples are:

1. When user try to commit offsets asynchronously, without calling a poll(), offset won't be committed.

2. If user does not call poll() frequently enough, broker will consider the consumer dead. If user set session timeout to be larger, the failure detection

will be also longer.
3. callbacks will not fire.

We fixed some problems in KAFKA-2123, which introduced a task queue and will temporarily reuse the caller thread for an "execution thread" to run
against the queue. But it does not solve the fundamental issue which is user have to essentially provide a dedicated thread keep calling poll even if they
actually don't want to consume data. So although new consumer is claimed to be single threaded, it is very likely most user have to write their own wrapper
with multiple threads.

Async semantic also becomes confusing with the single-threaded model. We are now enforcing user to do something after they fire an async call, which
seems to defeat one important purpose of async - user lose the freedom of doing something else after fire an async call. From user point of view, it is as if
they are still blocked on that call because they have to keep calling poll().

The main benefit of single threaded model is that we can detect client failure when they stop consuming data. We want to change the threading model a bit
so it can still have this benefit but solve the issues we mentioned above.

Proposed Solution

API Proposal

public interface Consunmer<K, V> extends O oseable {

/**
* Return the topic partition the consunmer is currently subscribing to.
*/
Set <Topi cPartition> subscriptions();
/**
* Subscribe to a specified topics. This nethod is for user who uses
* Kaf ka based group nmanagenent. This is a blocking call and will return
* when consuner successfully subscribed to the topic. Exception will be thrown
* when subscription fails.
*/
voi d subscribe(String... topics);
/**
* Subscribe to a partition explicitly. This nmethod is for users who want to
* have self group managenent. This is a non blocking call and will take effect
* when user do the next poll ().

*/

voi d subscri be(TopicPartition... partitions);

/*-k

* Simlar to subscribe(String... topics), this method is for users who uses

* Kafka based group managenent. It is a blocking call and will return

* when consuner successfully unsubscribed fromthe topics. Exception will be

* thrown when subscription fails.

*/

voi d unsubscribe(String... topics);

/**

* Unsubscribe froma partition explicitly. This nethod is for users who want

* to have self group nmanagenent. This is a non blocking call and will take

* effect when user do the next poll ().

*/

voi d unsubscri be(Topi cPartition... partitions);

/**

* This method will try to get data from Kafka brokers. It will block for at nost

* timeout if there is no data available, and will return i mediately when there

* are fetched nessages.

*/

Consuner Recor ds<K, V> poll (long timeout);

/**

* Commit offset for all the partitions this consuner is consunming from The conmtted

* offsets will be the offsets after last poll (). This function is a non-bl ocki ng nethod.

* |f user wants to commit offsets synchronously, user can call comit().get().

* |f user wants to commit offsets asynchronously, user can use the call back.

*/

Fut ur e<Map<Topi cPartition, Long>> conm t(Consuner Conmi t Cal | back call back);

/**

* Simlar to commt(Consuner Conmit Cal | back), except this nethods allows user to conmt specified

* offsets with optional netadata.

*/

Fut ur e<Map<Topi cPartition, Long>> conm t(Map<TopicPartition, Long> offsets, ConsumerConmit Cal | back
cal | back);

| *x*

* Tenmporarily stop consuming fromthe specified partitions.
* This is a non-blocking call and will take effect fromthe next poll ()
*/
voi d pause(TopicPartition... partitions);
/**
* Resune consunption frompartitions previously called on pause().
* This is a non-blocking call and will take effect fromthe next poll().
*/
voi d resune(Topi cPartition... partitions);
/**
* Seek to a specified offset for a partition. This is a non-blocking call and will take effect
* fromthe next poll ().
*/
voi d seek(TopicPartition partition, long offset);
/**
* Seek to the earliest available offsets of the partitions.
* This nethod is a non-blocking call and will only take effect fromthe next poll ().
*/
voi d seekToBegi nni ng(Topi cPartition... partitions);
/*-k
* Seek to the latest offsets of the partitions.
* Simlar to seekToBegi nning(TopicPartition...), this is a non-blocking call that will take effect
* after the next poll().
*/
voi d seekToEnd(Topi cPartition... partitions);
/**
* Return the current offset for the partition this consumer is subscribing to.
* Exception will be thrown when partition is not in subscriptions.
*/
I ong position(TopicPartition partition);
/*-k
* Return the commtted offsets of a subscribed partition.
* This is a synchronous call.
*/
O f set AndMet adata conmi tted(Topi cPartition partition);
/*-k
* Return the | atest offset appended to the log before the specified tine.
* This is a blocking call.
* If time=-1, the nethod returns the earliest offset.
* |f tine=-2, the nethod returns the | atest offset.
* |nplenentation wise, the |atest offset can be acquired fromthe LEO pi ggybacked
* in fetch response. So we don't need to talk to broker unless the last fetch response
* is certain time ago(e.g. 1 second). For the partition the consumer is not consumng from

* we still need to talk to broker.

*/

O f set AndMet adat a of f set By Ti me(Topi cPartition partition, [ong tinmne)
/*-k

* Return the netrics.
*/
Map<MetricNanme, ? extends Metric> netrics();
/**
* Return the partition information of a topic.
* This is a synchronous call.
*/
Li st<Partitionlnfo> partitionsFor(String topic);
/**
* Return all the topic partition information in the cluster.
* This is a synchronous call.

*/

Map<Topi cPartition, List<Partitionlnfo>> |istTopics();
/**

* @ee Kaf kaConsuner #cl ose()

*/

void close();

Threading-Model Proposal

The major gaining of using a single-threaded model is to associate the consumer liveliness with the actual data fetching. The downside of this issue is that
the current threading model is sort of "hijacking" the user thread to act as an execution thread when user thread calls poll().

Current Consumer Threading Model

User Thread Reuse user thread as execution thread
to execute task when user call poll().

Broker 0

poll() —» HeartbeatTask

commit() — OffsetCommitTask

TaskQueue
subscribe/unsub(Topic) \ U Thread
ser Threa

committed() —w- poll() in while loop

Broker 1

partitionsFor() — poll() in while loop

offsetByTime() — poli() in while loop Broker N

listTopic() — poll() in while loop

\d
A

setting / task submission phase execution phase i

We want to propose a threading model very similar to what we are using in new producer which has been proven to be welcomed by users. At the same
time, we will keep the benefit of single-threaded model with little efforts.

Consumer Threading Model

User Thread

)) Broker 0
subscribe/unsub(Topic) — SubscriptionTask

commit() ——s OffsetCommitTask

committed() —w OffsetFetchTask

Sender
Thread

partitionsFor() — TopicMetadataTask TaskQueue >

offsetByTime() — OffsetByTimeTask
Sender Thread will:

listTopic() — ListTopicTask 1. Convert Tasks to requests
) 2. Update metadata if necessary Broker N
poll() » OffsetFetchTask - optional 3. Send requests to brokers
DataFetchTask 4. fire callback when response is received
5. handle necessary refries
6. Heart beat and rebalance handling
7. Detect user thread failure (configurable)
Producer Threading Model
User Thread
Broker 0
send() — SendMessageTask >
Sender
" TaskQueue >
partitionsFor() — TopicMetadataTask Thread
Broker N

The major changes in this threading model are:

1. Asynchronous calls will follow the convention and easy to implement.
2. poll() becomes very intuitive - meaning user wants some data.

To solve the liveliness association with data fetching. We can let sender thread detect how long has it been since the user thread last called poll() -
generating a DataFetchTask. If user thread hasn't been fetching for session.timeout, the sender thread can choose to stop heartbeat. This feature can be a
boolean config to turn on/off, e.g. liveliness.detection.enabled. If it is turned on, the liveliness definition will be the same as current new consumer. If it is
turned off, the liveliness definition will be the same as old high level consumer.

Sync or Async, that's a question....

Personally, | think a call should be sync if

1. User expects information back, or
2. subsequent action depends on the function call.

Otherwise a method can be async.

The assumption is that if user called a method and try to get some information back, they will use that information for further actions. For methods that
might have both use cases, we provide both sync/async interface, e.g. commit().

The proposed API follows this reasoning, but I'm not sure if they are correctly defined. So we can discuss about that if there are further concerns.

With the above threading model, implementation of sync or async will be clean.

Throwing Exceptions Or Not?

In current implementation, consumer will try to handle exceptions if possible. For example, if user try to subscribe to a non-existing topic, the consumer will
just wait until the topic to be existed. However, after talking to several users, they actually want to know if a topic does not exist. In that case, throwing
exception might be better than handle that for user. Because if user wants to ignore it, they can always catch exception and retry, whereas if we handle it
for user, some user who cares about non-existing topic might not know they subscribed to a wrong topic. The above interface followed this reasoning.
However, arguably with some checking interface, it might be reasonable to say, if user cares about if a topic exists or not, they can always call listTopics()
before subscribing. So | am also not sure if we should throw exceptions in that case or not.

	New consumer API change proposal

