
KIP-47 - Add timestamp-based log deletion policy

Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

 Status
Current state:Under Discussion

Discussion thread: here

JIRA: KAFKA-3224

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
One of Kafka's officially-described use cases is a distributed commit log (). In this case, for a http://kafka.apache.org/documentation.html#uses_commitlog
distributed service that needed a commit log, there would be a topic with a single partition to guarantee log order. This service would use the commit log to
re-sync failed nodes. Kafka is generally an excellent fit for such a system, but it does not expose an adequate mechanism for log cleanup in such a case.
With a distributed commit log, data can be deleted when the client application determines that it is no longer needed; this creates completely arbitrary only
ranges of time and size for messages, which the existing cleanup mechanisms can't handle smoothly.

A new addition to the existing deletion policy based on the absolute timestamp of a message would work perfectly for this case. The client application will
periodically update the minimum timestamp of messages to retain, and Kafka will delete all messages earlier than that timestamp using the existing log
deletion mechanism, alongside the existing size-based and duration-based checks.

This is based off of work done for . and .KIP-32 - Add timestamps to Kafka message KIP-33 - Add a time based log index

Public Interfaces
This KIP has the following public interface changes:

Expose a new topic configuration, log.retention.min.timestamp. The value will be a Unix time in milliseconds.

Proposed Changes
Add a new topic configuration, log.retention.min.timestamp.

The format of the value will be a Unix time in milliseconds.
Modify the log deletion mechanism (in LogManager.scala) to also delete segments whose last timestamp is before the configured timestamp if the
timestamp is set

This check will use the time-based log index from .KIP-33 - Add a time based log index
Timestamp-based deletion will work with both and timestamp types.CreateTime LogAppendTime

Compatibility, Deprecation, and Migration Plan
There are no backwards compatibility or migration concerns with this change. The default value of the timestamp will be zero, so it will be ignored unless
explicitly configured.

Rejected Alternatives
All of these alternatives are meant to make it simple for client applications to delete a specific range of messages from a given partition on demand.

Pluggable log compaction policy. This would allow users to build a custom predicate to apply to log messages during compaction, and deploy it
alongside brokers. This approach is more complex and harder to test.
Admin tool to truncate a particular partition up to a minimum offset. Spiked implementation of this and it became fairly complex because of the
need to track the completion of a given deletion command on each broker in Zookeeper, to be able to delete Zookeeper metadata created by
these commands.
Manually setting / resetting existing configuration settings to try to flush ranges of a given partition's log. The various ways one would do this are
not exact, and rely on several asynchronous processes that make coordinating it very tricky.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201602.mbox/%3CCAFyDZt_qyRJy8-S%3DyioHU2tPkwP9fSLbZPy4BJ-0RiBKuQOAPQ%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-3224
http://kafka.apache.org/documentation.html#uses_commitlog
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-32+-+Add+timestamps+to+Kafka+message
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-33+-+Add+a+time+based+log+index
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-33+-+Add+a+time+based+log+index

	KIP-47 - Add timestamp-based log deletion policy

