
KIP-53 - Add custom policies for reconnect attempts to
NetworkdClient

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Discussion

Discussion thread:

JIRA: KAFKA-3496

Motivation
Currently if a Kafka client loses a connection with brokers it will wait for ‘reconnect.backoff.ms’ milliseconds before attempting to reconnect.

While this strategy works well when a client is disconnected for a short time if a single broker or the entire cluster become unavailable for a long time all
clients will quickly generate a lot of connections.

In addition, developers have limited control over a client which constantly loses its connections with the cluster.

In this KIP, we propose to add a new public interface to be able to add custom policies for the reconnect attempts .

Additionally, this feature may be a first step to support active/passive clusters. For instance, a kafka producer may switch to a backup cluster if it loses all
its connections from its active cluster for a configured time or after a number of failed connection attempts.

Public Interfaces
We propose to add a new public interface

public interface ReconnectAttemptPolicy {
 void configure(AbstractConfig configs);

 ReconnectAttemptScheduler newScheduler();

 interface ReconnectAttemptScheduler {
 long nextReconnectBackoffMs();
 }
}

Briefly, the class ReconnectAttemptPolicy is a factory to create a ReconnectAttemptScheduler. The ReconnectAttemptScheduler is used to get the amount
of time to wait before attempting a new connection.

N.B : This design is inspired from : https://github.com/datastax/java-driver/blob/3.0/driver-core/src/main/java/com/datastax/driver/core/policies
/ReconnectionPolicy.java

Below are the mains classes that changed for this proposal this list is not exhaustive) :

Connection

Currently these classes use directly the property : 'reconnect.backoff.ms'. They must be changed to accept a ReconnectAttemptPolicy as constructor
argument.The ReconnectAttemptPolicy

kafka/clients/ClusterConnectionStates
kafka/clients/NetworkClient

Configuration

kafka/clients/CommonClientConfigs

https://issues.apache.org/jira/browse/KAFKA-3496
https://github.com/datastax/java-driver/blob/3.0/driver-core/src/main/java/com/datastax/driver/core/policies/ReconnectionPolicy.java
https://github.com/datastax/java-driver/blob/3.0/driver-core/src/main/java/com/datastax/driver/core/policies/ReconnectionPolicy.java

Consumer/Producer

kafka/clients/producer/KafkaProducer
kafka/clients/producer/ProducerConfig
kafka/clients/consumer/KafkaConsumer
kafka/clients/consumer/KafkaConfig

This new features don't break any existing users.

Proposed Changes
The ReconnectAttemptPolicy is provided by the user configuration. A kafka client should hold a single instance of ReconnectAttemptPolicy which is
configured by either a ProducerConfig or ConsumerConfig.

The instance is passed to the ClusterConnectionStates through the NetworkClient.

A new ReconnectAttemptScheduler instance is created each time a connection to a broker is lost. Only one instance is maintained for each broker. This
instance can be discarded when the client connection gets back.

Out-of-box, we could provide this following two implementations :

ConstantReconnectAttemptPolicy : A policy which uses a constant delay between each reconnection attempt (default implementation which
uses)‘reconnect.backoff.ms’
ExponentialReconnectAttemptPolicy : A policy which exponentially grows the delay between attempts.

The ReconnectAttemptPolicy will be provided by the user configuration :

This is an exemple :

Properties config = new Properties();
config.put(ConsumerConfig.RECONNECT_ATTEMPTS_POLICY_CLASS_CONFIG, "org.apache.kafka.clients.
ExponentialReconnectAttemptPolicy");
config.put(ConsumerConfig.RECONNECT_EXPONENTIAL_MAX_DELAY_MS_CONFIG, 5000);
config.put(ConsumerConfig.RECONNECT_EXPONENTIAL_BASE_DELAY_MS_CONFIG, 50);

Compatibility, Deprecation, and Migration Plan
This change does not affect the behavior of existing client because we should set the ConstantReconnectAttemptPolicy as the default value for the
'reconnect.attempts.policy.class' property.

This default implementation must use the ‘ ’ to provide a constant policy. In addition, to don't change the behaviour of all command-reconnect.backoff.ms
line tools this default policy must be used.

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

http://reconnect.backoff.ms

	KIP-53 - Add custom policies for reconnect attempts to NetworkdClient

