
1.

2.

3.

4.

5.

6.

Discussion: Memory Management in Kafka Streams

Background
Memory Management: The End Goal
Triggering based Caches

Future Plan Proposal
Deserialized Objects Buffering

Future Plan Proposal
Persistent State Store Buffering

Future Plan Proposal
Summary
Open Questions

There have been some questions and discussions about how to efficiently let users to configure their memory usage in Kafka Streams since 0.10.0
release, and how that will affect our current development plans regarding caching, buffering, and state store management, etc. In this page we summarize
the memory usage background in Kafka Streams as of 0.10.0, and discuss what would be the "end goal" for Kafka Stream's memory management. This is
not used as an implementation design and development plan for memory management, but rather as a guidance for related feature developments that
may be correlating to the memory usage.

Background
There are a few modules inside Kafka Streams that allocate memory during the runtime:

Kafka Producer: each thread of a Kafka Streams instance maintains a producer client. The client itself maintains a buffer for batching records that
are going to be sent to Kafka. This is completely controllable by producer's
buffer.memory config.

Kafka Consumer: each thread of a Kafka Streams instance maintains two consumer clients, one for normal data fetching and another one for
state store replication and restoration only. Each client buffers fetched messages before they are returned to user from the call. Today this poll
buffer is not controllable yet, but in the near future we are going to add similar memory bound controls like we have in producers: .KAFKA-2045

Both producer and consumer also have separate TCP send / receive buffers that are not counted as the buffering memory, which are controlled
by the / configs; these are usually small (100K) and hence neglected most of the time. send.buffer.bytes receive.buffer.bytes

Triggering based Caches: as summarized in , we will be adding a cache for each of the aggregation and KTable.to operators, and we are KIP-63
adding a StreamsConfig to bound the total number of bytes used for all caches. BUT we are caching them as deserialized objects in order to
avoid serialization costs.

Deserialized Objects Buffering: within each thread's running loop, after the records are returned in raw bytes from , the thread will consumer.poll
deserialize each one of them into typed objects and buffer them, and process them one record at-a-time. This is mainly used for extracting the
timestamps (which may be in the message's value payload) and for reasoning about the streams-time to determine which stream to process next
(i.e. synchronizing streams based on their current timestamps, see for details).this

Persistent State Store Buffering: This is related to . Currently we are using RocksDB by default as persistent state stores for stateful KIP-63
operations such as aggregation / joins, and RocksDB have their own buffering and caching mechanism which allocate memory both off-heap and
on-heap. And RocksDB has its own configs that controls their sizes (we plan to expose these configs separately from StreamsConfig: KAFKA-

), to name a few:3740
block_cache_size: amount of cache in bytes that will be used by RocksDB. this is off-heap.NOTE
write_buffer_size: the size of a single memtable in RocksDB.
max_write_buffer_number: the maximum number of memtables, both active and immutable.

So a rough calculation about the amount of memory: block_cache_size + write_buffer_size * max_write_buffer_number.

Memory Management: The End Goal
In the ideal world, Kafka Streams should provide very simple configuration for its memory management. More concretely, for example, users should be
able to just specifying a single config value that bounds the total usage of 1) + 2) + 3) + 4) + 5) above, for example:

streams.memory.bytes (denoted as Total)

while keeping in mind that it needs to be at least be larger than

producer.memory.bytes + consumer.memory.bytes

https://issues.apache.org/jira/browse/KAFKA-2045
https://cwiki.apache.org/confluence/display/KAFKA/KIP-63%3A+Unify+store+and+downstream+caching+in+streams
http://docs.confluent.io/3.0.0/streams/architecture.html#flow-control-with-timestamps
https://cwiki.apache.org/confluence/display/KAFKA/KIP-63%3A+Unify+store+and+downstream+caching+in+streams
https://issues.apache.org/jira/browse/KAFKA-3740
https://issues.apache.org/jira/browse/KAFKA-3740

which represent case 1) and 2) above, and can also be specified by the user through the StreamsConfig, but in practice they may just be using the default
values.

And hence if users start their Streams application in a container with bounded memory usage as , they know that their coded application can use up to X
the amount of memory allowed by the container minus total allocable Streams library usage, i.e. . And even under task migration scenarios upon X - S
failures, or rebalancing, the immigrated tasks which will then allocate memory for its own caching and state stores, etc, will not suddenly increase the
libraries memory usage since its total is still bounded, and hence not causing OOM (note that in case of task migration due to one instance failure, without
memory bounding it may cause cascading OOMs, which is really bad user experience).

With this end goal in mind, now let's see how we should bound the memory usage for the above cases, especially 3), 4) and 5).

Triggering based Caches
The total memory used for this part (denoted as) can be calculated as:Cache

SUM_{all threads within an KafkaStreams instance} (SUM_{all tasks allocated to the thread} (SUM_{all caches
created within this task's topology} (#.bytes in this cache)))

NOTE that:

This total is dynamic from rebalance to rebalance since the tasks assigned to each thread can change, and hence the corresponding sub-
topology's number of caches can change too.
Because we have triggering-based caches on top of all RocksDB instances for aggregations, we are effectively caching the records twice (one
cache on top of RocksDB, and one cache inside RocksDB as Memtables). We have this extra caching in objects originally only for reducing
serialization costs.

Future Plan Proposal

This should be considered as part of KIP-63.

We know that for deserialized objects, their size in bytes are hard to estimate accurately without serializing them to bytes. Hence we should consider just
caching these values in terms of byte arrays and always pay the serialization / deserialization costs for better memory management.

And in the future we will allow users to configure which state stores they are going to use for their stateful operations: it can be persistent or in-memory,
and then:

We only need in-memory caching if persistent stores are used for aggregates, which will introduce extra serde costs as mentioned above.
If the state stores used are already in-memory (and this should be in deserialized objects), we do not need the caching in bytes any more, while
we still keep the dirty map for triggered flushing.

Deserialized Objects Buffering
The total memory used for this part (denoted as) can be calculated as:Buffer

SUM_{all threads within an KafkaStreams instance} (SUM_{all tasks allocated to the thread} (SUM_{partitions
assigned to the task} (#.bytes buffered for that partition)))

Today we have a config

buffered.records.per.partition

that controls how many records we would buffer before pausing the fetching on that partition, but that 1) does not restrictedly enforce the upper limit on the
number of records, and 2) number of deserialized records does not imply #. bytes.

Future Plan Proposal

Assuming that in the future most users will define record timestamps to be the timestamp on the message metadata field, and for the rare case where
user's specify a different timestamp extractor we are willing two pay the deserialization cost twice just for getting the source timestamp, then we can keep
this buffer in raw bytes as well: i.e. if the default record timestamp extractor is used, we just get the raw bytes records from consumer.poll and extract their
timestamps; if other timestamp extractor is used, we deserialize the record to get the timestamp, and throw away the deserialized records but still keep the
raw bytes in its buffer. In this case, we can change the config to:

buffered.bytes.per.partition

Persistent State Store Buffering
The total memory used for this part (denoted as) as:Store

SUM_{all threads within an KafkaStreams instance} (SUM_{all tasks allocated to the thread} (SUM_{all RocksDB
stores in the task} (total #.bytes allocated for this RocksDB)))

Future Plan Proposal

For advanced users who have good understandings about RocksDB configs, they should still be able to specify these config values such as 1) block cache
size, 2) Memtable buffer size, 3) number of Memtables, 4) etc for a single KafkaStreams instance; and if no user-specified values are provided some
default values will be provided. for some of these configs like block cache size, it should be a per Kafka Streams instance config instead of a per BUT
RocksDB config, and hence the Streams library should divide its values among the threads / tasks / RocksDB instances dynamically.

And also as a side note, if we are using bytes in our own caching layer as proposed above, then we should try to reduce the usage of RocksDB's own
Memtable by default as it effectively have less benefits additionally.

Summary
So putting it all together, here is the proposal of Kafka Streams to reason about its memory usage:

The user specified total amount of memory of a Kafka Streams instance is always ,Total divided evenly to its threads upon starting up the instance
whose number is static throughout its life time.

Within a single stream thread, the total memory will first be subtracted by the reserved memory for its producer (denoted as Total / numThreads
) and consumer (denoted as) client usage, whose values are also .Producer Consumer static throughout the thread's life time

For the rest of usable memory , it is dynamically allocated upon each rebalance:Total / numThreads - Producer - Consumer

Every time upon a rebalance, when the assigned tasks are created, the thread will first extract the memory by the amount of buffering
needs (), calculated as .Buffer buffered.bytes.per.partition * total.number.partitions
Then it will extract the amount of memory used for all its persistent state stores (), calculated by different store's specific equations, State
for example for RocksDB it is calculated as .block_cache_size + write_buffer_size * max_write_buffer_number
If the rest amount of memory is already negative, then we should log Total / numThreads - Producer - Consumer - Buffer - State
WARNING that there may not be not enough memory for this instance.
Otherwise, the rest amount of memory is allocated for caching needs (), and multiple caches will try to dynamically allocate Cache
memory from this buffer pool, and possibly flushing if it is about to be exhausted, as we mentioned above.

NOTE that the caveat of this approach is that the amount of and can increase with the number of tasks assigned to this instance's threads, Buffer State
and hence we may not actively guarding against the cascading OOMs as we mentioned above. As suggested in an off-line discussion, one way Jay Kreps
to think of this issue is the following:

Among all the memory usage listed above, and are " , and since #.threads are static throughout the Kafka Producer Consumer per-thread"
Streams life time, their total memory usage is also static and hence is easily bounded.

State, and are , which can change dynamically from rebalance to rebalance as #.tasks assigned to the threads of the Buffer Cache "per-task"
Kafka Streams instance can change over time.

Therefore calculating their usage in a manner by letting users specify its upper bound per-task / per-store / per-partition will "bottom-up"
not be able to bound the total memory they use, and hence upon task migration cascading OOMs could happen.
Instead, we should bound their usage in a "top-down" manner, i.e. we should calculate the per-task / per-store / per-partition configs
based on the total allocable memory (i.e.) and the #.tasks / etc upon rebalancing Total / numThreads - Producer - Consumer
dynamically, for example and RocksDB's buffered.bytes.per.partition block_cache_size.

Regarding specifically, currently it is based on a per-partition config (Buffer buffered.records.per.partition), but since its usage is only for
reasoning about the stream time, and its deserializing raw bytes are bounded by Consumer already, we should consider configuring it also at the
global level, for example replacing buffered.records.per.partition buffered.records.byteswith .

https://cwiki-test.apache.org/confluence/display/~jkreps

1.

2.

Open Questions
Should we buffer records or bytes for ? The pros of buffering records is avoid deserialization overheads, but the cons are expensive record Buffer
size estimates.
Should we buffer records or bytes for ? Similar trade-offs as above, but in addition that given the scenarios if there is already a state store Cache
underneath with its own block caching in bytes, should we consider removing this cache at all and only relying on the state store (RocksDB)'s own
block caching, while only keeping the dirty map in bytes and pay the get() values for all dirty keys and deserialization upon flushing?

The above questions can probably be better answered by inducting some benchmark experiments comparing, for example fhttps://github.com/jbellis/jamm
or estimating record sizes with serialization / deserialization costs.

https://github.com/jbellis/jamm

	Discussion: Memory Management in Kafka Streams

