
KIP-71: Enable log compaction and deletion to co-exist

Status
Motivation
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

JIRA: KAFKA-4015

Released: 0.10.1.0

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
For some usages, i.e., join windows in Kafka Streams, it is desirable to have logs that are both compacted and deleted. In these types of applications you
may have windows of time with many versions of key, during the window you only want to retain the latest version of the key, however once the window
has expired you would like to have the segments for the window deleted. With both compact and delete enabled retention.ms of the changelog would be
set to a value greater than the retention of the window. Although old windows wont automatically be removed on expiration they will eventually be removed
by the broker as the old segments expire. Kafka doesn’t currently support these semantics as compaction and deletion are exclusive.

Enabling this will also be useful in other scenarios, i.e., any ingest of data where you only care about the latest value for a particular key, but disk
constraints mean you can't keep the entire keyset.

Public Interfaces
Modify to take a comma separated list of valid policies, i.e., cleanup.policy cleanup.policy=compact,delete

Proposed Changes
Modify to take a comma separated list of valid policies. When set, both compact and delete cleanup cleanup.policy cleanup.policy=compact,delete is
strategies will run.

 Implementation outline
The is currently responsible for triggering the cleaning of topics with We will extend this to also support LogCleaner.CleanerThread cleanup.policy=delete. c

. In the method we’d first run compaction and then run deletion. We’d need to add some extra code to leanup.policy=compact_and_delete cleanOrSleep Log
to check if we have segments ready to be deleted and add any that are ready to the map (so we don’t get multiple threads trying to delete the inProgress
same segments), run the delete operation, and then remove them from the map (this is the same as it currently works for compacted logs).inProgress

There is no change for topics with , i.e, the cleanup will still be scheduled via . The benefits of this approach are that it cleanup.policy=delete LogManager
requires no further locking, all compacted topic cleaning is triggered from LogCleaner.CleanerThread and topics that are cleanup.policy=delete are not

 impacted.

Compatibility, Deprecation, and Migration Plan
No impact on existing users

Rejected Alternatives
. Add another Lock to Log.scala We considered adding a to . The and would try and acquire this lock ReentrantLock Log CleanerThread LogManager

before attempting to clean . We rejected this approach as there is already a fairly complex LogSegments locking hierarchy in partition / replica / log /
logsegment, and we’d prefer to not add another lock.

Move all cleanup code to LogCleaner and use locking approach above. This is a hybrid of our proposed solution and the rejected alternative above.
Rejected due to the same reason as above.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201608.mbox/%3cCAJikTEWO46VPMaqvseR4MUPR_3h8W2AyqhAkqQ4ftzjtmgMpLw@mail.gmail.com%3e
https://issues.apache.org/jira/browse/KAFKA-4015

Introduce another config log.compact and deprecate cleanup.policy. This would have been a backward compatible change requiring a migration path
for existing uses. It also introduced some awkwardness around supporting the existing usage of , i.e., you would also need to cleanup.policy=compact
ensure that and were set to -1.replication.ms replication.bytes

	KIP-71: Enable log compaction and deletion to co-exist

