KIP-73 Replication Quotas

Contents:

Contents:
Status
Revision History
Motivation
Goals
Background Concepts
Proposed Changes
© The Throttle Mechanism
© The Invocation Process
© Public Interfaces
® FetchRequest
= Metrics
© Config & Zookeeper
O Script: kafka-reassign-partitions.sh
® Test Plan
® Amendments
®* Q&A

© 1. How should an admin set the throttle value when rebalancing partitions?
© 2. How do | throttle a bootstrapping broker?
© 3. Could an ISR replica ever be throttled? Could a leader ever be throttled?
© 4. Do we need to disable auto leader rebalancing when moving partitions or bootstrapping a broker?
© 5. Do | need to alter the default value for replica.fetch.response.max.bytes?
® Rejected Alternatives

Status

Current state: Adopted

Jira: KAFKA-1464. here is no specific config for the number of throttled replica fetcher threads as the config for the number of replica
Relates to: KIP-13: Quotas, KIP-74: Add Fetch Response Size Limit in Bytes

Mail Thread: here

Released: 0.10.1.0

Revision History

® 10th Aug 2016: Switched from a delay-based approach, which uses dedicated throttled fetcher threads, to an inclusion-based approach, which
puts throttled and unthrottled replicas in the same request/response

® 25th Sept 2016: Split throttled replica list into two properties. One for leader side. One for follower side.

® 30th Sept 2016: Split the quota property into two values, one for the leader and one for the follower. This adds consistency with the replicas
property changed previously.

Motivation

Currently data intensive admin operations like rebalancing partitions, adding a broker, removing a broker or bootstrapping a new machine create an
unbounded load on inter-cluster traffic. This affects clients interacting with the cluster when a data movement occurs.

The intention of this proposal is to provide an upper bound on this traffic, so that clients can be guaranteed a predictable level of degradation, regardless of
which partitions are moved, whilst ensuring it's easy for admins to reason about progress of a replica movement operation.

Throttles are proposed on both leader- and follower-sides of the replication process so that replica movements, which are asymmetric, can be guaranteed
on any single machine. That's to say, admin tasks, such as rebalancing, can result in the movement of a replicas where the number of bytes read from
some brokers and the number of bytes written to others is not uniform, necessitating throttles on both sides.

Goals

® The administrator should be able to configure an upper bound on the "effect" replication traffic (moving partitions, adding brokers, shrinking
brokers) has on client traffic (writes & reads) so clients get a guaranteed throughput, regardless of moving partitions or bootstrapping brokers.

® The administrator should be able to modify throttle bounds with no restart, so they can speed up or slow down replica movement tasks. For
example a move might be progressing too slowly, might not be making progress, or a client be seeing too much service degradation.

® The throttle bound should be strictly upheld on all brokers (both transmitted and received), regardless of the arrangement of leaders and followers
involved, so that the behaviour is intuitive and ubiquitous from the admin's perspective.

* A Kafka Admin, who wishes to strictly bound the effect replica rebalancing will have on clients to X% of the cluster's utilisation, but also reliably
predict that specific rebalancing processes will complete in Y seconds, should be able to easily determine the appropriate throttle setting to use
basedon X & Y.

https://issues.apache.org/jira/browse/KAFKA-1464
https://cwiki.apache.org/confluence/display/KAFKA/KIP-13+-+Quotas
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-74%3A+Add+Fetch+Response+Size+Limit+in+Bytes
http://mail-archives.apache.org/mod_mbox/kafka-dev/201608.mbox/%3CFF6C1038-C69C-4698-8888-AE5531578F64%40confluent.io%3E

Background Concepts

The replication process has some important properties. The follower has a single thread per leader. This sends fetch requests, and waits for responses.
The fetch request contains a list of all partitions the follower is interested in, and they are returned in a single fetch response. The leader processes fetch
requests, from each follower, serially, to ensure strict ordering.

The follower puts a cap on the size of the request by passing a max.bytes field (aka fetchSize) in the request (set to replica.fetch.max.bytes). This doesn’t
apply to the request as a whole. It applies to each partition returned. So the size of the response will be dependent on this setting multiplied by the number
of partitions being replicated.

Kafka already includes the concept of throttling (via Quotas), applied to Client traffic. This mechanism, when enabled, ensures a single client will not
exceed the certain bandwidth figure, specified for produce and/or fetch traffic. The quota value, can be changed at runtime for each client.

The current Quotas implementation works by delaying requests for an appropriate period of time, if the quota is breached. The mechanism is somewhat

similar to Purgatory. If the request should be throttled, an appropriate delay is calculated. The request is then dequeued until that time period elapses, after
which the response is sent back to the client. An equivalent approach is used for produce requests.

Proposed Changes

The proposed solution can be split, conceptually, into two parts: The throttle mechanism itself, and the invocation process used for defining which replicas
should be throttled. Brokers are provided a list of replicas to throttle and a quota value, in B/s, which must not be exceeded by total throttled traffic on that
broker. These settings are used to throttle replication traffic for those partitions.

Throttles are applied on both leaders and followers separately.

The rebalancing script, kafka-reassign-partitions.sh, will be altered to determine (internally) which replicas will be moved, as well as allowing the admin to
define an appropriate quota, using a new command line argument.

The Throttle Mechanism

The throttle is applied to both leaders and followers. This allows the admin to exert strong guarantees on the throttle limit, applied to both transmitted and
received bytes, regardless of the distribution of partitions in a move.

This is best understood diagrammatically:

Leader ConfigCommand
1. The admin initiates a rebalance or other =
admin task, specifying a maximum @ ﬁ
bandwidth for replication on any single
broker. Quota «——— Throttle(LeaderQuotaRate)
2. The throttle value, and the set of replicas
affected, are transmitted to brokers. @ l

3. The follower includes throttled partitions
in the fetch request only if the

FollowerQuotaRate has not been Fotch = Fetch Response
exceeded. Requests are now fixed size pequest (fixed size of
and the Fetcher randomises the order replica fetch.response.max bytes)
that partitions passed in the request to
ensure fairness.
4.The leader processes partitions in the @
order defined in the request. Throttled @ «— Throttle(FollowerQuotaRate)
partitions are excluded from the @
response if the LeaderQuotaRate is — Quota
exceeded. throttled-replicas=1-0,2-1..."
5. The follower reads the response and replication-quota=10000
increases the quota by the received —
bytes. The process repeats (goto 3.). Follower ConfigCommand '

kafka_reassign_partiions.sh
—replication-quota 10000 ...

So there are two quota mechanisms, backed by separate metrics. One on the follower, one on the leader. The leader tracks the rate of requested bytes
(LeaderQuotaRate). The follower tracks the throttled bytes allocated to fetch responses for throttled replicas (FollowerQuotaRate).

The follower makes a requests, using the fixed size of replica.fetch.response.max.bytes as per KIP-74. The order of the partitions in the fetch request are
randomised to ensure fairness.

When the leader receives the fetch request it processes the partitions in the defined order, up to the response's size limit. If the inclusion of a partition,

listed in the leader's throttled-replicas list, causes the LeaderQuotaRate to be exceeded, that partition is omitted from the response (aka returns 0 bytes).
Logically, this is of the form:

if (throttled(partition))

var includedl nFet chResponse: Bool ean = quot a. r ecor dAndEval uat e(byt esRequest edFor Parti ti on)

When the follower receives the fetch response, if it includes partitions in its throttled-partitions list, it increments the FollowerQuotaRate:

var includeThrottledPartitionslnNext Request: Bool ean = quota.recordAndEval uat e(previ ousResponseThrott| edByt es)

If the quota is exceeded, no throttled partitions will be included in the next fetch request emitted by this replica fetcher thread.

This mechanism is optimistic. That's to say a large cluster could exceed the quota with the first request, only then will a throttled partitions be omitted from
future requests/responses, to bring the rate down to the desired throttle value. To bound this issue we limit the size of requests to a fixed and configurable
bound. This uses a new config, covered in KIP-74: replica.fetch.response.max.bytes. This config must be tuned by the admin to ensure that the initial set
of requests (a) does not cause the quota to be violated on the first request and (b) will return a response within the configured window. However, the
default value, of 10MB, is small enough to support leader quotas over 1MB/s (see Q&A 5 below).

The Invocation Process

The standard dynamic config mechanism is used to define which replicas will be throttled and to what throughput. This is covered by two separate configs:

1. Alist of replicas that should be throttled. This takes the form [partitionld]-[replicald],[partitionld]-[replica-id]...
2. The quota for a broker. For example 10MB/s.

The admin sets the throttle value when they initiate a rebalance:
kafka-reassign-partitions.sh --execute ... --replication-quota 10000

The tool, kafka-reassign-partitions.sh, calculates a mapping of topic -> partition-replica for each replica that is either (a) a move origin or (b) a move
destination. A leader throttle is applied to all existing replicas that are moving. A follower throttle is applied to replicas that are being created as part of the
reassignment process (i.e. move destinations). There are independent configs for the leader and follower, but this is wrapped in kafka-reassign-partitions.
sh so the admin only need be aware of these if they alter them directly via kafka-configs.sh.

leader.replication.throttled.replicas = [partld]:[replica], [partld]:[replica]...
follower.replication.throttled.replicas = [partld]:[replica], [partld]:[replica]...
leader.replication.throttled.rate = 1000000

follower.replication.throttled.rate = 1000000

The admin removes the the throttle from Zookeeper by running the --verify command after completion of the rebalance.

Alternatively each property can be set independently using kafka-configs.sh (see below)

Public Interfaces

FetchRequest

A new field is required in the fetch request to bound the total number of bytes within the fetch response. This is covered by KIP-74

Metrics

The metrics reuse the Kafka Metrics (rather than Yammer) to be inline (and reuse the windowing functionality of) the existing Client Quotas
implementation. This is the list of metrics we add as part of this change:

® |eaderReplicationThrottledRate: The rate of throttled replication for transmitted bytes from a broker.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-74%3A+Add+Fetch+Response+Size+Limit+in+Bytes

* FollowerReplicationThrottledRate: The rate of throttled replication for transmitted bytes into a broker.

* PartitionBytesInRate: Equivalent to BytesIinPerSec, but at a partition level (i.e. total traffic - throttled and not throttled). This is required for
estimating how long a rebalance will take to complete. B/s. See usability section below.

® SumReplicaLag: This is the sum of all replica lag values on the broker. This metric is used to monitor progress of a rebalance and is particularly
useful for determining if the rebalance has become stuck due to an overly harsh throttle value (as the metric will stop decreasing).

Config & Zookeeper

Topic-level dynamic config (these properties cannot be set through the Kafka config file, or on topic creation)

bin/kafka-configs ... --alter
--add-config 'leader.replication.throttled.replicas=[partld]-[replica], [partld]-[replica]...’

--entity-type topic
--entity-name topic-name

bin/kafka-configs ... --alter
--add-config ‘follower.replication.throttled.replicas=[partld]-[replica], [partld]-[replica]..."

--entity-type topic
--entity-name topic-name

Broker-level dynamic config (these properties cannot be set through the Kafka config file), unit=B/s

bin/kafka-configs ... --alter
--add-config 'leader.replication.throttled.replicas=10000

--entity-type broker
--entity-name brokerld

bin/kafka-configs ... --alter

--add-config ‘follower.replication.throttled.
replicas=10000'

--entity-type broker

--entity-name brokerld

Wildcard support is also provided for setting a throttle to all replicas:

bin/kafka-configs ... --alter
--add-config 'leader.replication.throttled.replicas=*'
--entity-type topic

And to set a ubiquitous throttle value to all brokers:

bin/kafka-configs ... --alter

--add-config 'leader.replication.throttled.
rate=10000'

--entity-type broker

The ‘replication-quota’ is only applied to ‘throttled-replicas’.

Here we add the concept of a dynamic config, applied at a broker level. This is equivalent, in implementation, to the existing entity-type =
client configuration, but applied at a broker level and available for dynamic change.

NB - whilst it is possible to change throttle configs in this way, there should not be any requirement for admins to use kafka-configs directly when
rebalancing partitions, as this will be handled internally within kafka-reassign-partitions.sh. The admin would be required to use this interface to throttle a
bootstrapping broker. The mechanism for doing this is described in the Q&A below.

These are reflected in zookeeper via a new Zookeeper path: /config/broker/[broker-id]

/1 Sanpl e configuration for throttled replicas

"version":1,
"config":
"l eader.replication.throttled.replicas":"0:0,0:1,0:2,1:0,1:1, 1: 2"

/1 Sanpl e configuration for throttled replicas
"version":1,

"config":
"follower.replication.throttled.replicas":"0:0,0:1,0:2,1:0,1:1, 1: 2"

/1 Sanpl e configuration for replication-quota
{
"version":1,
"config":
"replication-quota":"1000000"

}
}

/1 Change notification for replication-quota

"version":1,
"entity_path": "/config/broker/"

Inline with client-quota, two configs are provided to control the window used for ThrottledRateln/Out.

replication. quota.w ndow. num = The nunber of sanples to retain in nenory (default 11)

replication. quota.w ndow. si ze. seconds = The tinme span of each sanple (default 1)

Script: kafka-reassign-partitions.sh

This will be altered to add an additional, optional parameter:
kaf ka-reassi gn-partitions.sh --execute ...--replication-quota 1000

Where the replication-quota is: the maximum bandwidth, in B/s, allocated to moving replicas. This parameter is only valid when used in conjunction with --
execute. If omitted, no quota will be set.

In addition the kafka-reassign-partitions script will include in its output (from --generate option only) a MoveRatio:
MoveRati o = #partitions-to-be-noved / #total-partition-count

This is simply a number which the admin can use to estimate how long a rebalance will take. See the Q&A section below.

Test Plan

System tests to include:
Given a static two node cluster (p=100, r=2)
When data is moved from one node to the other

Then replicas should move at the quota dictated rate.

Given a two node cluster with incoming produce requests (p=100, r=2)
When data is moved from one node to the other

Then replicas should move at the quota dictated rate - the inbound rate.

Given a three node cluster (p=100, r=2)
When data is moved from one node to the other two nodes
Then replicas should move at the quota dictated rate.

[repeat with produce requests]

Given a three node cluster (p=100, r=2)
When data is moved from two nodes to a single node
Then replicas should move at the quota dictated rate.

[repeat with produce requests]

Amendments

While testing KIP-73, we found an issue described in https://issues.apache.org/jira/browse/KAFKA-4313. Basically, when there are mixed high-volume and
low-volume partitions, when replication throttling is specified, ISRs for those low volume partitions could thrash. KAFKA-4313 fixes this issue by avoiding
throttling those replicas in the throttled replica list that are already in sync. Those in-sync replicas traffic will still be accounted for the throttled traffic though.

Q&A

1. How should an admin set the throttle value when rebalancing partitions?

First consider how much network bandwidth you are prepared to give up for rebalancing. Looking at your broker’s network utilisation is a good way to do
this. If your network is saturated, whatever value you pick here will translate into a proportional impact on your clients, so if you set --replication-quota to
[30% of your network utilisation] your clients would see a maximum degradation of 30%.

On the flip side you need to ensure enough progress so that your rebalance completes in some known amount of time. You can estimate this is by

observing two metrics. max(BytesInPerSec) & log.topic.partition.Size. kafka-reassign-partitions.sh includes, in its output, the proportion of partitions that
will be moved as part of the rebalance. The MoveRatio. Using this you can calculate how long the move will take by calculating:

MoveTime = MoveRatio x TotalLogSizePerBroker x #Brokers / (replication-quota - max(BytesInPerSec))

If the quota is set aggressively, compared to the inbound rate, it is still possible for you to get into a situation where you will never make progress on one
or more brokers. Specifically as (replication-quota - max(BytesInPerSec)) -> 0. This could happen if replicas moved in such a way that max
(BytesInPerSec) increased or followers became concentrated on a single broker such that their total “keep up” traffic exceeds the throttle value or simply
because you have had an unexpected increase in load. This should be relatively rare and is easy to deal with. The administrator monitors a new metric
SumReplicalag. If this stops reducing, before rebalancing completes, then the admin must simply increase the throttle value a little to compensate.

2. How do | throttle a bootstrapping broker?

Bootstrapping a broker isn't specifically covered by any Kafka tooling but you can still configure a throttle manually for this admin operation. Pick a throttle
value using the same method described for reassigning partitions (i.e. above). Then set the replication-quota using kafka_configs.sh.

Next work out which partitions are assigned to the broker(s) being bootstrapped. Assign these replicas to the throttled-replicas config using kafka_configs.
sh.

Use the SumReplicalLag metric to monitor progress, looking out for partitions not making progress. Make adjustments if necessary.

Finally, remove the configs when the bootstrapping broker is fully caught up.

3. Could an ISR replica ever be throttled? Could a leader ever be throttled?

Yes. An in-sync-replica could be throttled when it catches up, before the config value is removed. This should be OK. The replica had enough bandwidth
allocated to catch up in the first place. But producers writing to throttled leaders could incur, what should be a short, delay.

It is also possible to throttle a leader. Either a ‘caught up’ replica could become a leader via automated leader balancing, in which case it would be
throttled. We discuss the sizing of the throttle, for this case, in the next question.

4. Do we need to disable auto leader rebalancing when moving partitions or bootstrapping a broker?

So long as the throttle is set to the same value on all nodes, it should not matter if leaders move. There could potentially be an issue if an asymmetric
throttle was applied (for example setting a higher throttled throughput on a bootstrapping broker, and lower throttle values on other brokers). This would
result in a lack of progress and the throttle value would have to be changed dynamically to allow progress to resume.

The admin can prevent this issue by checking the throttle value is set correctly. If the incoming bytes per broker is IN and the throttle value is T on a
network of throughput N with replication factor R, we know for any broker:

IN<ST<N- INR

https://issues.apache.org/jira/browse/KAFKA-4313

Intuitively this means the throttle must be greater than the write rate, so there is bandwidth for both Catch-Up and Keep-Up traffic. Conversely, the throttle
must be low enough to allow inbound user traffic (which will not be throttled) assuming all leaders have rebalanced (think bootstrapping broker as the most
extreme case. Here IN/R is the proportion of inbound traffic for these leaders)).

5. Do | need to alter the default value for replica.fetch.response.max.bytes?

Generally you should not need to alter the default fetch request size. The critical factor is that the initial set of requests, for throttled replicas, return in the
configured window duration. By default the total window is 11 x 1s and replica.fetch.response.max.bytes = 10MB. Intuitively the constraint is:

#brokers x replica.fetch.response. max. bytes / m n(QuotaLeader x #brokers, NetworkSpeed) < total-w ndow size
So, for the majority of use cases, where the sum of leader throttles < NetworkSpeed we can reduce this to:
replica. fetch. response. max. bytes < QuotalLeader x total-w ndow size

So consider a 5 node cluster, with a leader quota of 1MB/s, and a window of 10s, on a GbE network. The leader's throttle dominates, so the largest
permissible replica.fetch.response.max.bytes would be 1MB/s * 10s = 10MB. Note that this calculation is independent of the number of brokers. However if
we had a larger cluster, of 500 nodes, the network on the follower could become the bottleneck. Thus we would need to keep replica.fetch.response.max.
bytes less than total-window-size * NetworkSpeed / #brokers = 10s * 100MB/s / 500 = 2MB.

Rejected Alternatives

There appear to be two sensible approaches to this problem: (1) omit partitions from fetch requests (follower) / fetch responses (leader) when they exceed
their quota (2) delay them, as the existing quota mechanism does, using separate fetchers. Both appear to be valid approaches with slightly different
design tradeoffs. The former was chosen as the underlying code changes are simpler (based on explorations of each). The details of the later are
discussed here.

We also considered a more pessimistic approach which quota's the follower's fetch request, then applies an adjustment when the response returns. This
mechanism has some advantages, most notably it is conservative, meaning the throttle value will never be exceeded. However, whilst this approach
should work, the adjustment process adds some complexity when compared to the optimistic approaches. Thus this proposal was rejected (This is
discussed in full here).

https://docs.google.com/document/d/1UztMxS8gv0OUNrRtnISF9OJeV6NoGfDNysenSOq8DzE/edit?usp=sharing
https://docs.google.com/document/d/1nB_4xNk3gP0Id_10gSsW36S7hw-L3Do8ykkhRWISpEg/edit?usp=sharing
https://docs.google.com/a/confluent.io/document/d/1T3FtDftFPqH0cNk-HMaj4kGY_s0XRzh5E-WGFvGMnx8/edit?usp=sharing

	KIP-73 Replication Quotas

