
1.
2.
3.

KIP-74: Add Fetch Response Size Limit in Bytes

Motivation
Public Interfaces
Proposed Changes

Status
Current state: Accepted

Discussion thread: here

JIRA: KAFKA-2063

Released: 0.10.1.0

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Currently the only possible way for client to limit fetch response size is via per-partition response limit taken from config setting max_bytes max.partition.

.fetch.bytes

So the maximum amount of memory the client can consume is , where is the total number of max.partition.fetch.bytes * num_partitions num_partitions
partitions currently being fetched by consumer.

This leads to following problems:

Since can be quite big (several thousands), the memory required for fetch responses can be several GBnum_partitions
max.partition.fetch.bytes can not be set arbitrarily low since it should be greater than maximum message size for fetch request to work.
Memory usage is not easily predictable - it depends on consumer lag

This KIP proposes to introduce new version of fetch request with new top-level parameter to limit the size of fetch response and solve above max_bytes
problem.

In particular, if consumer issues parallel fetch requests, the memory consumption will not exceed .N N * max_bytes

Actually, it will be min(,) since per-partition limit is still respected.N * max_bytes max.partition.fetch.bytes * num_partitions

Public Interfaces
This KIP introduces:

New fetch request (v.3) with response size limit
New client-side config parameter - client's fetch response size limitfetch.max.bytes
New replication config parameter - limit used by replication threadreplica.fetch.response.max.bytes
New inter-broker protocol version " " - starting from this version brokers will use fetch request v.3 for replication 0.10.1-IV0

Proposed Changes
Proposed changes are quite straightforward. We introduce FetchRequest v.3 with new top level parameter :max_bytes

Fetch Request (Version: 3) => replica_id max_wait_time min_bytes max_bytes [topics]
 replica_id => INT32
 max_wait_time => INT32
 min_bytes => INT32
 max_bytes => INT32
 topics => topic [partitions]
 topic => STRING
 partitions => partition fetch_offset max_bytes
 partition => INT32
 fetch_offset => INT64
 max_bytes => INT32

Fetch Response v.3 will remain the same as v.2.

Server processes partitions in order they appear in request.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201608.mbox/%3cCDF4A2B8-22D2-4AC4-9D0A-901FFC71F5EF@yandex-team.ru%3e
https://issues.apache.org/jira/browse/KAFKA-2063

1.

2.

Otherwise, for each partition except the first one server fetches up to corresponding partition limit , but not bigger than remaining response limit.max_bytes

For the first partition, server always fetches at least one message Empty response limits will be returned for all partitions that didn't fit into response limit..

This algorithm provides following guarantees:

FetchRequest always makes progress - if server has message(s), than at least one message is returned irrespective of max_bytes
FetchRequest response size will not be bigger than max(, size of the first message in first partition)max_bytes

Since new fetch request processes partitions in order and stops fetching data when response limit is hit, client should use some kind of partition shuffling
to ensure fairness.

Consider following example - suppose client want to fetch from 4 partitions: A, B, C, D. Suppose that partitions A and B are growing much faster than C
and D.

If client is always fetching partitions in order A,B,C,D than it is possible that response limit is hit before any messages were fetched from C and D.

In this scenario client won't get any messages from C and D until it catches up with A and B.

The solution is to reorder partitions in fetch request in round-robin fashion to continue fetching from first empty partition received or to perform random
shuffle of partitions before each request.

Round-robin shuffling seems to be more "fair" and predictable so we decided to deploy it at ReplicaFetcherThread and in Consumer Java API.

Compatibility, Deprecation, and Migration Plan
The new fetch request is designed to work properly even if the top level is less than the message size. We decided to establish the following max_bytes
defaults:

fetch.max.bytes = 50MB

replica.fetch.response.max.bytes = 10MB

Rejected Alternatives
Some discussed/rejected alternatives:

Together with addition of global response limit deprecate per-partitions limit. Rejected since per-partition limit can be useful for Kafka streams
(see mail list discussion).
Do random partition shuffling on server side. ensure fairness without client-side modifications. non-deterministic behaviour on server Pros: Cons:
side; round-robin can be easily implemented on client side.

	KIP-74: Add Fetch Response Size Limit in Bytes

