
Kafka Streams Internal Data Management
Table of Contents

Overview
Current State

KStream API
KTable API

Data Management
Overview
Commits
Internal Topics and State Store Names

Overview
Kafka Streams allows for stateful stream processing, i.e. operators that have an internal state. This internal state is managed in so-called . A state stores
state store can be ephemeral (lost on failure) or fault-tolerant (restored after the failure). The default implementation used by Kafka Streams DSL is a fault-
tolerant state store using 1. an internally created and compacted changelog topic (for fault-tolerance) and 2. one (or multiple) RocksDB instances (for
cached key-value lookups). Thus, in case of starting/stopping applications and rewinding/reprocessing, this internal data needs to get managed correctly.

Current State
We first want to give an overview about the current implementation details of Kafka Streams with regard to (internally) created topics and the usage of
RocksDB. We can categorize available transformations for and as shown below. All operators within a category use the same internalKStream KTable
state management mechanism. Therefore, we get an overview of the state management strategy for each transformation.

:single stream tuple-by-tuple those transformations do not use an internal state — however, if they change the key ("new key") data re-
partitioning might be required after the transformation (i.e., writing to and reading from a topic

)

aggregation and joins: those transformations do use internal state (RocksDB plus changelog topic)
operations marked with "+ state" allows the usage of user defined state

State management details are given below.

KStream API

 currently offers the following methods which do have different implication with regard to (internally) created topics and RocksDB usage.KStream

single stream multiple streams

data transformation other data transformation

tuple-by-tuple
(KStream -> KStream)

aggregation tuple-by-tuple (i.e., joins)

same key new
key

non-windowed
(KStream ->
KTable)

windowed

(KTable -> KTable<<W,K>
V>

non-windowed

KStream-
KTable

windowed

KStream-
KStream

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

filter

(1:[0,1])

 aggregateByKey aggregateByKey print join (as of 0.10.2) join

filterNot

(1:[0,1])

 reduceByKey reduceByKey (deprecated as of writeAsText
1.0)

leftJoin leftJoin

 selectKey

(1:1)

countByKey countByKey foreach outerJoin

mapValues

(1:1)

map

(1:1)

 through merge (as of 1.0)

flatMapValues

(1:n)

flatMap

(1:n)

 to

transformValues

(1:1 + state)

transform

(1:n +
state)

 branch

 process

(1:0 +
state)

 peek (as of 0.11.0)

KTable API

 currently offers the following methods which do have different implication with regard to (internally) created topics and RocksDB usage. KTable

single stream multiple streams

data transformation other data transformation

tuple-by-tuple
(KTable -> KTable/KGroupedTable)

aggregation

(KGroupedTable -> KTable)

tuple-by-tuple

(joins)KTable-KTable

same key

(-> KTable)

new key

(-> KGroupedTable)

filter

(1:[0,1])

 aggregate print (deprecated as of 1.0) join

filterNot

(1:[0,1])

 reduce writeAsText (deprecated as of 1.0) leftJoin

mapValues

(1:1)

 count foreach (deprecated as of 1.0) outerJoin

 groupBy

(1:1) [internally simple map]

 through (deprecated as of 1.0)

 to (deprecated as of 1.0)

 toStream

 Unable to render Jira issues macro, execution

error.

1.
2.
3.
4.

Data Management

Overview

There are four methods to explicitly deal with user topics:

 for consumingKStreamBuilder#stream()
 for consumingKStreamBuilder#table()

 for writingKStream/KTable#to()
 for writing and reading again.KStream/KTable#through()

User topics are required to be created by the user before Kafka Streams application is started. Furthermore, an interal topic is created each time re-

partitioning is required (via an ingested); this happens when thethrough()

key is changed before an aggregation is performed (not necessarily directly after each other):

// Pseudo code
KStream source = builder.stream(...)
source.someTransformation().newKey().someTransformation().someAgg(); // newKey() refers to any transformation
that changes the key

Here's an illustration of the above pseudo-code topology:

This implies that after “new key” there was no to()/through() performed. The aggregation itself uses a RocksDB instance as key-value state store that
also persists to local disk. Flushing to disk happens asynchronously. Furthermore, an internal compacted changelog topic is created. The state store
sends changes to the changelog topic in a batch, either when a default batch size has been reached or when the commit interval (see "Commits" below) is
reached.

 Unable to render Jira issues macro, execution

error.

RocksDB is just used as an internal lookup table (that is able to flush to disk if the state does not fit into memory

) and the internal changelog topic is created for fault-tolerance reasons. Thus,

the changelog topic is the source of truth for the state (= the log of the state), while RocksDB is used as (non-fault tolerant) cache. RocksDB cannot be
used for fault-tolerance because flushing happens to local disk, and it cannot be controlled when flushing happens. RocksDB flushing is only required
because state could be larger than available main-memory. Thus, the internal changelog topic is used for fault-tolerance: If a task crashes and get
restarted on different machine, this internal changelog topic is used to recover the state store. .Currently, the default replication factor of internal topics is 1

There are two main differences between non-windowed and windowed aggregation with regard to key-design. For window aggregation the key is <K,W>, i.

e., for each window a new key is used. Thus, the memory usage grows over time (

 The second difference is), even if the key-space is bounded (i.e., the number of unique keys). This implies that log-compaction cannot purge any old data.
about RocksDB instances: instead of using a single instance, Streams uses multiple instances (called “segments”) for different time periods. After the
window retention time has passed old segments can be dropped. Thus, RocksDB memory requirement does not grow infinitely (in contrast to changelog

. (KAFKA-4015 was fixed in 0.10.1 release, and windowed changelog topics don't grow unbounded as they apply an additional retention time topic)
parameter).

For KTable a similar behavior applies. Using groupBy().someAgg() results in internal topic and RocksDB creation.

For stateful KStream transformation (, , and) antransform transformValue process explicit state store is used. Depending on the use state store, a
changelog topic might get created.

For joins, one or two internal state stores (RocksDB plus internal changelog topic) are used. Behavior is same as for aggregates. Joins can also be
windowed (see window aggregates).

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

Related Work to state stores:

Commits

Kafka Streams commit the current processing progress in regular intervals (parameter). If a commit is triggered, all state stores need tocommit.interval.ms
flush data to disk, i.e., all internal topics needs to get flushed to Kafka. Furthermore, all user topics get flushed, too. Finally, all current topic offsets are
committed to Kafka. In case of failure and restart, the application can resume processing from its last commit point (providing at-least-once processing
guarantees).

Internal Topics and State Store Names

Currently in the Streams DSL we are trying to abstract the auto generated internal topics and state store names as "KTable names" and "window names";

however, in future release all state store name will be exposed to the user. Intern

al topics follow the naming convention <application.id>-<operatorName>-<suffix>; this naming convention might change any time in.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

	Kafka Streams Internal Data Management

