
Druid Integration

Introduction
Objectives

Preliminaries
Druid
Storage Handlers

Usage
Discovery and management of Druid datasources from Hive

Create tables linked to existing Druid datasources
Create Druid datasources from Hive
Druid kafka ingestion from Hive

Start/Stop/Reset Druid Kafka ingestion
INSERT, INSERT OVERWRITE and DROP statements
Queries completely executed in Druid

Select queries
Timeseries queries
GroupBy queries

Queries across Druid and Hive
Open Issues (JIRA)

Introduction
This page documents the work done for the integration between Druid and Hive, which was started in .HIVE-14217

Objectives

Our main is to be able to index data from Hive into Druid, and to be able to query Druid datasources from Hive. Completing this work will bring goal
benefits to the Druid and Hive systems alike:

 Druid is a system specially well tailored towards the execution of OLAP queries on event data. Hive Efficient execution of OLAP queries in Hive.
will be able to take advantage of its efficiency for the execution of this type of queries.

 Druid queries are expressed in JSON, and Druid is queried through a REST API over HTTP. Once a Introducing a SQL interface on top of Druid.
user has declared a Hive table that is stored in Druid, we will be able to transparently generate Druid JSON queries from the input Hive SQL
queries.

 There are multiple operations that Druid does not support natively yet, e.g. joins. Putting Being able to execute complex operations on Druid data.
Hive on top of Druid will enable the execution of more complex queries on Druid data sources.

 Currently, indexing in Druid is usually done through MapReduce jobs. We will enable Hive to Indexing complex query results in Druid using Hive.
index the results of a given query directly into Druid, e.g., as a new table or a materialized view (), and start querying and using that HIVE-10459
dataset immediately.

The initial implementation, started in , focused on 1) enabling the discovery of data that is already stored in Druid from Hive, and 2) being able HIVE-14217
to query that data, trying to make use of Druid advanced querying capabilities. For instance, we put special emphasis on pushing as much computation as
possible to Druid, and being able to recognize the type of queries for which Druid is specially efficient, e.g. or queries.timeseries groupBy

Future work after the first step is completed is being listed in . If you want to collaborate on this effort, a list of remaining issues can be found at HIVE-14473
the end of this document.

Preliminaries
Before going into further detail, we introduce some background that the reader needs to be aware of in order to understand this document.

Druid

Druid is an open-source analytics data store designed for business intelligence (OLAP) queries on event data. Druid provides low latency (real-time) data
ingestion, flexible data exploration, and fast data aggregation. Existing Druid deployments have scaled to trillions of events and petabytes of data. Druid is
most commonly used to power user-facing analytic applications. You can find more information about Druid . here

Storage Handlers

Version information

Druid integration is introduced in Hive 2.2.0 (). Initially it was compatible with Druid 0.9.1.1, the latest stable release of Druid to that HIVE-14217
date.

https://issues.apache.org/jira/browse/HIVE-14217
https://issues.apache.org/jira/browse/HIVE-10459
https://issues.apache.org/jira/browse/HIVE-14217
http://druid.io/docs/0.9.1.1/querying/timeseriesquery.html
http://druid.io/docs/0.9.1.1/querying/groupbyquery.html
https://issues.apache.org/jira/browse/HIVE-14473
http://druid.io/
https://issues.apache.org/jira/browse/HIVE-14217

You can find an overview of Hive Storage Handlers ; the integration of Druid with Hive depends upon that framework.here

Usage
For the running examples, we use the dataset included in the quickstart tutorial of Druid.wikiticker

Discovery and management of Druid datasources from Hive

First we focus on the discovery and management of Druid datasources from Hive.

Create tables linked to existing Druid datasources

Assume that we have already stored the dataset mentioned previously in Druid, and the address of the Druid broker is .wikiticker 10.5.0.10:8082

First, you need to set the Hive property in your configuration to point to the broker address:hive.druid.broker.address.default

SET hive.druid.broker.address.default=10.5.0.10:8082;

Then, to create a table that we can query from Hive, we execute the following statement in Hive:

CREATE EXTERNAL TABLE druid_table_1
STORED BY 'org.apache.hadoop.hive.druid.DruidStorageHandler'
TBLPROPERTIES ("druid.datasource" = "wikiticker");

Observe that you need to specify the datasource as TBLPROPERTIES using the druid.datasource property. Further, observe that the table needs to

be created as EXTERNAL, as data is stored in Druid. The table is just a logical entity that we will use to express our queries, but there is no data
movement when we create the table. In fact, what happened under the hood when you execute that statement, is that Hive sends a segment metadata que
ry to Druid in order to discover the schema (columns and their types) of the data source. Retrieval of other information that might be useful such as
statistics e.g. number of rows, is in our roadmap, but it is not supported yet. Finally, note that if we change the Hive property value for the default broker
address, queries on this table will automatically run against the new broker address, as the address is not stored with the table.

If we execute a statement, we can actually see the information about the table:DESCRIBE

https://cwiki-test.apache.org/confluence/display/Hive/StorageHandlers
http://druid.io/docs/latest/tutorials/tutorial-batch.html
http://druid.io/docs/0.9.1.1/querying/segmentmetadataquery.html

hive> DESCRIBE FORMATTED druid_table_1;
OK
col_name data_type comment
__time timestamp from deserializer
added bigint from deserializer
channel string from deserializer
cityname string from deserializer
comment string from deserializer
count bigint from deserializer
countryisocode string from deserializer
countryname string from deserializer
deleted bigint from deserializer
delta bigint from deserializer
isanonymous string from deserializer
isminor string from deserializer
isnew string from deserializer
isrobot string from deserializer
isunpatrolled string from deserializer
metrocode string from deserializer
namespace string from deserializer
page string from deserializer
regionisocode string from deserializer
regionname string from deserializer
user string from deserializer
user_unique string from deserializer
Detailed Table Information
Database: druid
Owner: user1
CreateTime: Thu Aug 18 19:09:10 BST 2016
LastAccessTime: UNKNOWN
Retention: 0
Location: hdfs:/tmp/user1/hive/warehouse/druid.db/druid_table_1
Table Type: EXTERNAL_TABLE
Table Parameters:
 COLUMN_STATS_ACCURATE {\"BASIC_STATS\":\"true\"}
 EXTERNAL TRUE
 druid.datasource wikiticker
 numFiles 0
 numRows 0
 rawDataSize 0
 storage_handler org.apache.hadoop.hive.druid.DruidStorageHandler
 totalSize 0
 transient_lastDdlTime 1471543750
Storage Information
SerDe Library: org.apache.hadoop.hive.druid.serde.DruidSerDe
InputFormat: null
OutputFormat: null
Compressed: No
Num Buckets: -1
Bucket Columns: []
Sort Columns: []
Storage Desc Params:
 serialization.format 1
Time taken: 0.111 seconds, Fetched: 55 row(s)

We can see there are three different groups of columns corresponding to the Druid categories: the column () mandatory in Druid, the timestamp __time di
 columns (whose type is STRING), and the columns (all the rest).mension metrics

Create Druid datasources from Hive

If we want to manage the data in the Druid datasources from Hive, there are multiple possible scenarios.

For instance, we might want to create an empty table backed by Druid using a statement and then append and overwrite data using CREATE TABLE INSE
 and Hive statements, respectively.RT INSERT OVERWRITE

CREATE EXTERNAL TABLE druid_table_1
(`__time` TIMESTAMP, `dimension1` STRING, `dimension2` STRING, `metric1` INT, `metric2` FLOAT)
STORED BY 'org.apache.hadoop.hive.druid.DruidStorageHandler';

Another possible scenario is that our data is stored in Hive tables and we want to preprocess it and create Druid datasources from Hive to accelerate our
SQL query workload. We can do that by executing a (CTAS) statement. For example:Create Table As Select

CREATE EXTERNAL TABLE druid_table_1
STORED BY 'org.apache.hadoop.hive.druid.DruidStorageHandler'
AS
<select `timecolumn` as `__time`, `dimension1`, `dimension2`, `metric1`, `metric2`....>;

Observe that we still create three different groups of columns corresponding to the Druid categories: the column () mandatory in Druid, timestamp __time
the columns (whose type is STRING), and the columns (all the rest).dimension metrics

In both statements, the column types (either specified statically for statements or inferred from the query result for statements) are CREATE TABLE CTAS
used to infer the corresponding Druid column category.

Further, note that if we do not specify the value for the druid.datasource property, Hive automatically uses the fully qualified name of the table to
create the corresponding datasource with the same name.

Druid kafka ingestion from Hive

Druid Kafka Indexing Service supports exactly-once ingestion from Kafka topic by managing the creation and lifetime of Kafka indexing tasks. We can
manage Druid Kafka Ingestion using Hive statement as shown below.CREATE TABLE

Druid Kafka Ingestion

CREATE EXTERNAL TABLE druid_kafka_table_1(`__time` timestamp,`dimension1` string, `dimension1` string,
`metric1` int, `metric2 double)
 STORED BY 'org.apache.hadoop.hive.druid.DruidStorageHandler'
 TBLPROPERTIES (
 "kafka.bootstrap.servers" = "localhost:9092",
 "kafka.topic" = "topic1",
 "druid.kafka.ingestion.useEarliestOffset" = "true",
 "druid.kafka.ingestion.maxRowsInMemory" = "5",
 "druid.kafka.ingestion.startDelay" = "PT1S",
 "druid.kafka.ingestion.period" = "PT1S",
 "druid.kafka.ingestion.consumer.retries" = "2"
);

Version Info

Version 2.2.0: CREATE TABLE syntax when data is managed via hive.

CREATE TABLE druid_table_1
(`__time` TIMESTAMP, `dimension1` STRING, `dimension2` STRING, `metric1` INT, `metric2` FLOAT)
STORED BY 'org.apache.hadoop.hive.druid.DruidStorageHandler';

 NOTE - Before Hive 3.0.0, we do not use tables and do not specify the value for the property.EXTERNAL druid.datasource

For versions 3.0.0+, All Druid tables are EXTERNAL (). HIVE-20085

Version Info

Integration with Druid Kafka Indexing Service is introduced in Hive 3.0.0 (HIVE-18976).

http://druid.io/docs/latest/development/extensions-core/kafka-ingestion.html
https://issues.apache.org/jira/browse/HIVE-20085
https://jira.apache.org/jira/browse/HIVE-18976

Observe that we specified kafka topic name and kafka bootstrap servers as part of the table properties. Other tunings for can Druid Kafka Indexing Service
also be specified by prefixing them with to configure duration of druid ingestion tasks we can add 'druid.kafka.ingestion.' e.g. "druid.kafka.ingestion.
taskDuration" = "PT60S" as a table property.

Start/Stop/Reset Druid Kafka ingestion

We can Start/Stop/Reset druid kafka ingestion using sql statement shown below.

ALTER TABLE druid_kafka_test SET TBLPROPERTIES('druid.kafka.ingestion' = 'START');
ALTER TABLE druid_kafka_test SET TBLPROPERTIES('druid.kafka.ingestion' = 'STOP');
ALTER TABLE druid_kafka_test SET TBLPROPERTIES('druid.kafka.ingestion' = 'RESET');

Note: Reseting the ingestion will reset the kafka consumer offset maintained by druid to the next offset. The consumer offsets maintained by druid will be
reset to either the earliest or latest offset depending on druid.kafka.ingestion.useEarliestOffset

 table property. This can cause duplicate/missing events. We typically only need to reset kafka ingestion when messages in Kafka at the current consumer
offsets are no longer available for consumption and therefore won't be ingested into Druid.

INSERT, INSERT OVERWRITE and DROP statements

Querying Druid from Hive
Once we have created our first table stored in Druid using the , we are ready to execute our queries against Druid.DruidStorageHandler

When we express a query over a Druid table, Hive tries to the query to be executed efficiently by pushing as much computation as possible to rewrite
Druid. This task is accomplished by the based in , which identifies patterns in the plan and apply rules to rewrite the input cost optimizer Apache Calcite
query into a new equivalent query with (hopefully) more operations executed in Druid.

In particular, we implemented our extension to the optimizer in , which builds upon the work initiated in , and extends its logic to HIVE-14217 CALCITE-1121
identify more complex query patterns (queries), translate filters on the dimension to Druid intervals, push limit into Druid queries, etc.timeseries time select

Currently, we support the recognition of , and s queries.timeseries groupBy, elect

Once we have completed the optimization, the (sub)plan of operators that needs to be executed by Druid is translated into a valid Druid JSON query, and
passed as a property to the Hive physical TableScan operator. The Druid query will be executed within the TableScan operator, which will generate the
records out of the Druid query results.

We generate a single Hive split with the corresponding Druid query for and , from which we generate the records. Thus, the degree of timeseries groupBy
parallelism is 1 in these cases. However, for simple queries without limit (although they might still contain filters or projections), we partition the select
original query into queries and generate one split for each of them, thus incrementing the degree of parallelism for these queries, which usually return a x
large number of results, to .x

Consider that depending on the query, it might not be possible to push any computation to Druid. However, our contract is that the query should always be
. Thus, in those cases, Hive will send a query to Druid, which basically will read all the segments from Druid, generate records, and then executed select

execute the rest of Hive operations on those records. This is also the approach that will be followed if the cost optimizer is disabled ().not recommended

Queries completely executed in Druid

We focus first on queries that can be pushed completely into Druid. In these cases, we end up with a simple plan consisting of a TableScan and a Fetch
operator on top. Thus, there is no overhead related to launching containers for the execution.

Select queries

We start with the simplest type of Druid query: queries. Basically, a query will be equivalent to a scan operation on the data sources, although select select
operations such as projection, filter, or limit can still be pushed into this type of query.

Consider the following query, a simple select query for 10 rows consisting of all the columns of the table:

SELECT * FROM druid_table_1 LIMIT 10;

The Hive plan for the query will be the following:

Version Info

Version 2.2.0 : These statements are supported by Hive managed tables (not external) backed by Druid.

For versions 3.0.0+, All Druid tables are EXTERNAL () and these statements are supported for any table.HIVE-20085

http://druid.io/docs/latest/development/extensions-core/kafka-ingestion.html
https://cwiki.apache.org/confluence/display/Hive/Cost-based+optimization+in+Hive
http://calcite.apache.org/
https://issues.apache.org/jira/browse/HIVE-14217
https://issues.apache.org/jira/browse/CALCITE-1121
http://druid.io/docs/0.9.1.1/querying/selectquery.html
https://issues.apache.org/jira/browse/HIVE-20085

hive> EXPLAIN
 > SELECT * FROM druid_table_1 LIMIT 10;
OK
Plan optimized by CBO.
Stage-0
 Fetch Operator
 limit:-1
 Select Operator [SEL_1]
 Output:["_col0","_col1","_col2","_col3","_col4","_col5","_col6","_col7","_col8","_col9","_col10","
_col11","_col12","_col13","_col14","_col15","_col16","_col17","_col18","_col19","_col20","_col21"]
 TableScan [TS_0]
 Output:["__time","added","channel","cityname","comment","count","countryisocode","countryname","
deleted","delta","isanonymous","isminor","isnew","isrobot","isunpatrolled","metrocode","namespace","page","
regionisocode","regionname","user","user_unique"],properties:{"druid.query.json":"{\"queryType\":\"select\",\"
dataSource\":\"wikiticker\",\"descending\":\"false\",\"intervals\":[\"-146136543-09-08T08:22:17.096-00:01:15
/146140482-04-24T16:36:27.903+01:00\"],\"dimensions\":[\"channel\",\"cityname\",\"comment\",\"countryisocode\",
\"countryname\",\"isanonymous\",\"isminor\",\"isnew\",\"isrobot\",\"isunpatrolled\",\"metrocode\",\"namespace\",
\"page\",\"regionisocode\",\"regionname\",\"user\",\"user_unique\"],\"metrics\":[\"added\",\"count\",\"
deleted\",\"delta\"],\"pagingSpec\":{\"threshold\":10},\"context\":{\"druid.query.fetch\":true}}","druid.query.
type":"select"}
Time taken: 0.141 seconds, Fetched: 10 row(s)

Observe that the Druid query is in the properties attached to the TableScan. For readability, we format it properly:

{
 "queryType":"select",
 "dataSource":"wikiticker",
 "descending":"false",
 "intervals":["-146136543-09-08T08:22:17.096-00:01:15/146140482-04-24T16:36:27.903+01:00"],
 "dimensions":
 ["channel","cityname","comment","countryisocode",
 "countryname","isanonymous","isminor","isnew",
 "isrobot","isunpatrolled","metrocode","namespace",
 "page","regionisocode","regionname","user","user_unique"
],
 "metrics":["added","count","deleted","delta"],
 "pagingSpec":{"threshold":10}
}

Observe that we get to push the limit into the Druid query (). Observe as well that as we do not specify a filter on the timestamp dimension for threshold
the data source, we generate an interval that covers the range (,+).

In Druid, the timestamp column plays a central role. In fact, Druid allows to filter on the time dimension using the property for all those queries. intervals
This is very important, as the time intervals determine the nodes that store the Druid data. Thus, specifying a precise range minimizes the number of
nodes hit by the broken for a certain query. Inspired by Druid , we implemented the intervals extraction from the filter conditions in the logical plan PR-2880
of a query. For instance, consider the following query:

SELECT `__time`
FROM druid_table_1
WHERE `__time` >= '2010-01-01 00:00:00' AND `__time` <= '2011-01-01 00:00:00'
LIMIT 10;

The Druid query generated for the SQL query above is the following (we omit the plan, as it is a simple TableScan operator).

{
 "queryType":"select",
 "dataSource":"wikiticker",
 "descending":"false",
 "intervals":["2010-01-01T00:00:00.000Z/2011-01-01T00:00:00.001Z"],
 "dimensions":[],
 "metrics":[],
 "pagingSpec":{"threshold":10}
}

https://github.com/druid-io/druid/pull/2880

Observe that we infer correctly the interval for the specified dates, , because in Druid the 2010-01-01T00:00:00.000Z/2011-01-01T00:00:00.001Z
starting date of the interval is included, but the closing date is not. We also support recognition of multiple interval ranges, for instance in the following SQL
query:

SELECT `__time`
FROM druid_table_1
WHERE (`__time` BETWEEN '2010-01-01 00:00:00' AND '2011-01-01 00:00:00')
 OR (`__time` BETWEEN '2012-01-01 00:00:00' AND '2013-01-01 00:00:00')
LIMIT 10;

Furthermore we can infer overlapping intervals too. Finally, the filters that are not specified on the time dimension will be translated into valid Druid filters
and included within the query using the property.filter

Timeseries queries

Timeseries is one of the types of queries that Druid can execute very efficiently. The following SQL query translates directly into a Druid query:timeseries

-- GRANULARITY: MONTH
SELECT `floor_month`(`__time`), max(delta), sum(added)
FROM druid_table_1
GROUP BY `floor_month`(`__time`);

Basically, we group by a given time granularity and calculate the aggregation results for each resulting group. In particular, the function floor_month
over the timestamp dimension __ represents the Druid month granularity format. Currently, we support time , , floor_year floor_quarter floor_mon

, , , , , and granularities. In addition, we support two special types of th floor_week floor_day floor_hour floor_minute floor_second
granularities, and , which we describe below. We plan to extend our integration work to support other important Druid custom granularity all none
constructs, such as . and granularitiesduration period

The Hive plan for the query will be the following:

hive> EXPLAIN
 > SELECT `floor_month`(`__time`), max(delta), sum(added)
 > FROM druid_table_1
 > GROUP BY `floor_month`(`__time`);
OK
Plan optimized by CBO.
Stage-0
 Fetch Operator
 limit:-1
 Select Operator [SEL_1]
 Output:["_col0","_col1","_col2"]
 TableScan [TS_0]
 Output:["__time","$f1","$f2"],
 properties:{"druid.query.json":"{\"queryType\":\"timeseries\",\"dataSource\":\"wikiticker\",\"
descending\":\"false\",\"granularity\":\"MONTH\",\"aggregations\":[{\"type\":\"longMax\",\"name\":\"$f1\",\"
fieldName\":\"delta\"},{\"type\":\"longSum\",\"name\":\"$f2\",\"fieldName\":\"added\"}],\"intervals\":[\"
-146136543-09-08T08:22:17.096-00:01:15/146140482-04-24T16:36:27.903+01:00\"]}","druid.query.type":"timeseries"}
Time taken: 0.116 seconds, Fetched: 10 row(s)

Observe that the Druid query is in the properties attached to the TableScan. For readability, we format it properly:

{
 "queryType":"timeseries",
 "dataSource":"wikiticker",
 "descending":"false",
 "granularity":"MONTH",
 "aggregations":[
 {"type":"longMax", "name":"$f1", "fieldName":"delta"},
 {"type":"longSum", "name":"$f2", "fieldName":"added"}
],
 "intervals":["-146136543-09-08T08:22:17.096-00:01:15/146140482-04-24T16:36:27.903+01:00"]
}

Observe that the granularity for the Druid query is .MONTH

http://druid.io/docs/0.9.1.1/querying/timeseriesquery.html
http://druid.io/docs/0.9.1.1/querying/granularities.html

One rather special case is granularity, which we introduce by example below. Consider the following query:all

-- GRANULARITY: ALL
SELECT max(delta), sum(added)
FROM druid_table_1;

As it will do an aggregation on the complete dataset, it translates into a query with granularity . In particular, the equivalent Druid query timeseries all
attached to the TableScan operator is the following:

{
 "queryType":"timeseries",
 "dataSource":"wikiticker",
 "descending":"false",
 "granularity":"ALL",
 "aggregations":[
 {"type":"longMax", "name":"$f1", "fieldName":"delta"},
 {"type":"longSum", "name":"$f2", "fieldName":"added"}
],
 "intervals":["-146136543-09-08T08:22:17.096-00:01:15/146140482-04-24T16:36:27.903+01:00"]
}

GroupBy queries

The final type of queries we currently support is . This kind of query is more expressive than queries; however, they are less groupBy timeseries
performant. Thus, we only fall back to queries when we cannot transform into queries.groupBy timeseries

For instance, the following SQL query will generate a Druid query:groupBy

SELECT max(delta), sum(added)
FROM druid_table_1
GROUP BY `channel`, `user`;

{
 "queryType":"groupBy",
 "dataSource":"wikiticker",
 "granularity":"ALL",
 "dimensions":["channel","user"],
 "aggregations":[
 {"type":"longMax","name":"$f2","fieldName":"delta"},
 {"type":"longSum","name":"$f3","fieldName":"added"}],
 "intervals":["-146136543-09-08T08:22:17.096-00:01:15/146140482-04-24T16:36:27.903+01:00"]
}

Queries across Druid and Hive

Finally, we provide an example of a query that runs across Druid and Hive. In particular, let us create a second table in Hive with some data:

CREATE TABLE hive_table_1 (col1 INT, col2 STRING);
INSERT INTO hive_table_1 VALUES(1, '#en.wikipedia');

Assume we want to execute the following query:

http://druid.io/docs/0.9.1.1/querying/groupbyquery.html

SELECT a.channel, b.col1
FROM
(
 SELECT `channel`, max(delta) as m, sum(added)
 FROM druid_table_1
 GROUP BY `channel`, `floor_year`(`__time`)
 ORDER BY m DESC
 LIMIT 1000
) a
JOIN
(
 SELECT col1, col2
 FROM hive_table_1
) b
ON a.channel = b.col2;

The query is a simple join on columns and . The subquery is executed completely in Druid as a query. Then the results are channel col2 a groupBy
joined in Hive with the results of results of subquery . The query plan and execution in Tez is shown in the following:b

hive> explain
 > SELECT a.channel, b.col1
 > FROM
 > (
 > SELECT `channel`, max(delta) as m, sum(added)
 > FROM druid_table_1
 > GROUP BY `channel`, `floor_year`(`__time`)
 > ORDER BY m DESC
 > LIMIT 1000
 >) a
 > JOIN
 > (
 > SELECT col1, col2
 > FROM hive_table_1
 >) b
 > ON a.channel = b.col2;
OK
Plan optimized by CBO.
Vertex dependency in root stage
Map 2 <- Map 1 (BROADCAST_EDGE)
Stage-0
 Fetch Operator
 limit:-1
 Stage-1
 Map 2
 File Output Operator [FS_11]
 Select Operator [SEL_10] (rows=1 width=0)
 Output:["_col0","_col1"]
 Map Join Operator [MAPJOIN_16] (rows=1 width=0)
 Conds:RS_7._col0=SEL_6._col1(Inner),HybridGraceHashJoin:true,Output:["_col0","_col2"]
 <-Map 1 [BROADCAST_EDGE]
 BROADCAST [RS_7]
 PartitionCols:_col0
 Filter Operator [FIL_2] (rows=1 width=0)
 predicate:_col0 is not null
 Select Operator [SEL_1] (rows=1 width=0)
 Output:["_col0"]
 TableScan [TS_0] (rows=1 width=0)
 druid@druid_table_1,druid_table_1,Tbl:PARTIAL,Col:NONE,Output:["channel"],properties:
{"druid.query.json":"{\"queryType\":\"groupBy\",\"dataSource\":\"wikiticker\",\"granularity\":\"all\",\"
dimensions\":[{\"type\":\"default\",\"dimension\":\"channel\"},{\"type\":\"extraction\",\"dimension\":\"
__time\",\"outputName\":\"floor_year\",\"extractionFn\":{\"type\":\"timeFormat\",\"format\":\"yyyy-MM-dd'T'HH:
mm:ss.SSS'Z'\",\"granularity\":\"year\",\"timeZone\":\"UTC\",\"locale\":\"en-US\"}}],\"limitSpec\":{\"type\":\"
default\",\"limit\":1000,\"columns\":[{\"dimension\":\"$f2\",\"direction\":\"descending\",\"dimensionOrder\":\"
numeric\"}]},\"aggregations\":[{\"type\":\"doubleMax\",\"name\":\"$f2\",\"fieldName\":\"delta\"},{\"type\":\"
doubleSum\",\"name\":\"$f3\",\"fieldName\":\"added\"}],\"intervals\":[\"1900-01-01T00:00:00.000/3000-01-01T00:
00:00.000\"]}","druid.query.type":"groupBy"}
 <-Select Operator [SEL_6] (rows=1 width=15)
 Output:["_col0","_col1"]

 Filter Operator [FIL_15] (rows=1 width=15)
 predicate:col2 is not null
 TableScan [TS_4] (rows=1 width=15)
 druid@hive_table_1,hive_table_1,Tbl:COMPLETE,Col:NONE,Output:["col1","col2"]
Time taken: 0.924 seconds, Fetched: 31 row(s)
hive> SELECT a.channel, b.col1
 > FROM
 > (
 > SELECT `channel`, max(delta) as m, sum(added)
 > FROM druid_table_1
 > GROUP BY `channel`, `floor_year`(`__time`)
 > ORDER BY m DESC
 > LIMIT 1000
 >) a
 > JOIN
 > (
 > SELECT col1, col2
 > FROM hive_table_1
 >) b
 > ON a.channel = b.col2;
Query ID = user1_20160818202329_e9a8b3e8-18d3-49c7-bfe0-99d38d2402d3
Total jobs = 1
Launching Job 1 out of 1
2016-08-18 20:23:30 Running Dag: dag_1471548210492_0001_1
2016-08-18 20:23:30 Starting to run new task attempt: attempt_1471548210492_0001_1_00_000000_0
Status: Running (Executing on YARN cluster with App id application_1471548210492_0001)
--
 VERTICES MODE STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
--
Map 1 container SUCCEEDED 1 1 0 0 0 0
Map 2 container SUCCEEDED 1 1 0 0 0 0
--
VERTICES: 02/02 [==========================>>] 100% ELAPSED TIME: 0.15 s
--
2016-08-18 20:23:31 Completed running task attempt: attempt_1471548210492_0001_1_00_000000_0
OK
#en.wikipedia 1
Time taken: 1.835 seconds, Fetched: 2 row(s)

Open Issues (JIRA)

key summary type created updated due assignee reporter priority status resolution

 JQL and issue key arguments for this macro require at least one Jira application link to be configured

	Druid Integration

