
KIP-80: Kafka Rest Server

Motivation
Why add Kafka Rest Server to Kafka?
Proposed Changes

Rest Server
Producer API
Consumer API
Admin API and Security Integration:

Public Interfaces
Producer API
Consumer API
TODO

Compatibility, Deprecation, and Migration Plan
This KIP only proposes additions. There should be no compatibility issues.
Rejected Alternatives

Make Kafka Rest Server an external third-party tool
Push/Stream messages to end clients:

Status 

Current state: DISCARDED

Discussion thread:  here

JIRA:  KAFKA-3294

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The goal is to add Kafka Rest Server to Kafka Repository. This will allow any language/tool that
can work with HTTP to produce and consume messages, and perform administrative actions with Kafka service.

Why add Kafka Rest Server to Kafka?
There are already some open-source REST proxies are available. Confluent REST Proxy got comprehensive interface.
But we would like to add REST server that many users ask for under Apache Kafka repo.

We want to add Kafka Rest Server to Kafka for the following reasons.

1) Many data Infra tools comes up with Rest Interface. It is useful to have inbuilt Rest API support for Produce,
   Consume messages and admin interface for integrating with external management and provisioning tools.
2) Shipping Kafka Rest Server as part of a normal Kafka release makes it immediately available to every user that downloads Kafka.
3) Helps to maintain the version compatibility between Kafka and Rest Server. 
 

Some of the good practices and ideas will be borrowed from existing tools.

Proposed Changes

Rest Server
The REST server is a separate server, sitting between Kafka cluster and client applications. It is wrapper around existing client libraries. 
Request/Responses supports JSON format with embedded data format (JSON and Base64 encoded strings). Proxy uses vendor specific
content types in Content-Type and Accept headers to make the format of the data explicit. This approach is borrowed from  Confluent Rest Proxy. 
Supported  Content-Types are: application/vnd.kafka.binary.v1+json, application/vnd.kafka.json.v1+json
Rest server can be easily scaled by deploying multiple proxy instances. This way we can spread the load across multiple proxy instances.

Producer API

REST server accepts produce requests for specific topics or partitions. It internally uses java producer instance to write messages into Kafka. 

Consumer API

https://www.mail-archive.com/dev@kafka.apache.org/msg57510.html
https://issues.apache.org/jira/browse/KAFKA-3294


REST Proxy uses the new consumer API to consume the messages from the subscribed topic on behalf of the
specified consumer group. Consumer instances are stateful and tied to a particular Rest server instance.
A full URL is provided when the instance is created and it should be used to construct any subsequent requests.
When a message is consumed on behalf of a consume group for the first time, then Kafka Consumer instance joins
the consumer group and subscribes to the topic. All Consumer instances that are currently members of that group
and subscribed to that topic divide topic partitions among themselves. If a Consumer instance has not consumed
from a particular topic on behalf of a particular consumer group for configured interval (normally large interval),
then it unsubscribes from the topic on behalf of that group. This is for cleaning unused consumer instances due to dead clients.
Offset commit can be either automatic or manual as requested by the user.

We can also retrieve the messages for a consumer, from a specific partition, starting with an offset.

We also want to take community opinion on other ways of implementing consumer group functionality.

Admin API and Security Integration:

This will be taken up as future work after the KIP-4 implementation.

Public Interfaces

Producer API

POST /topics/:topic
Description : Produce messages to a given topic

Parameters:
    Topic (String) - topic name

Request:
   JSON Object contains array of produce records

Response:
    JSON Object contains response objects

Status Codes:
    404 Not Found
         Error Code 40401 - topic Not Found
         Error Code 40402 - Version Not Found
   500 Internal Server Error
        Error Code 50001 - Kafka Error

 

Example request:

 



POST /topics/test HTTP/1.1

Host:kafkarest.host.com

Content-Type: application/vnd.kafka.binary.v1+json

Accept: application/vnd.kafka.v1+json

{

 "records": [

   {

     "key": "a2V5",

     "value": "dmFsdWU="

   },

   {

     "value": "dmFsdWU=",

     "partition": 1

   }

 ]

}

 

Example response:

 

HTTP/1.1 200 OK

Content-Type: application/vnd.kafka.v1+json

{

 "offsets": [

   {

     "partition": 2,

     "offset": 1

   },

   {

     "partition": 1,

     "offset": 2

   }

 ]

}

 

POST /topics/:topicName/partitions/:partition
Description : Produce messages to one partition of the topic

Parameters:
     topicName (String) - topic name
     partition (int) - partition number

http://kafkarest.host.com


Request:
    JSON Object contains array of produce records

Response:
    JSON Object contains response objects

Status Codes:
      404 Not Found
           Error Code 40401 - topic Not Found
           Error Code 40402 - partition Not Found
     500 Internal Server Error
          Error Code 50001 - Kafka Error

Example request:
 

POST /topics/test/partitions/1 HTTP/1.1

Host:kafkarest.host.com

Content-Type: application/vnd.kafka.binary.v1+json

Accept: application/vnd.kafka.v1+json

{

  "records": [

   {

     "key": "a2V5",

     "value": "dmFsdWU="

   },

   {

     "value": "dmFsdWU="

   }

 ]

}

Example response:

 

http://kafkarest.host.com


HTTP/1.1 200 OK

 Content-Type: application/vnd.kafka.v1+json

{

 "offsets": [

   {

     "partition": 1,

     "offset": 1,

   },

   {

     "partition": 1,

     "offset": 2,

   }

 ]

}

Consumer API

 Description : Create a new consumer instance in the consumer group.

 

POST /consumers/:group

Parameters:

group (String) - group name

Request:

JSON Object contains name, dataformat, consumer properties.

Response:

JSON Object contains response objects.
Response includes a URL including the host since the consumer is stateful and tied to a specific REST proxy instance

Status Codes:

404 Not Found
Error Code 40401 - topic Not Found
Error Code 40402 -  partition Not Found

500 Internal Server Error
Error Code 50001 - Kafka Error

Example request:

 



POST /consumers/group/ HTTP/1.1

Accept: application/vnd.kafka.v1+json, application/vnd.kafka+json, application/json

{

 "name": "Instance1",

 "format": "binary",

 "auto.offset.reset": "smallest",

 "auto.commit.enable": "false"

}

 

Example response:

 

HTTP/1.1 200 OK

Content-Type: application/vnd.kafka.v1+json

{

 "id": "Instance1",

 "url": " "http://kafkarest1.com/consumers/group/instances/Instance1

}

 

Description : consumes a message from the specified topic on behalf of the specified consumer group

 

GET /consumers/:group/:instance/:topic

Parameters:

topic (String) - topic name
group (String) - consumer group id
Instance (string) - consumer instance name

Response:

JSON Object contains response objects

Status Codes:

404 Not Found
Error Code 4040X - topic Not Found
Error Code 4040Y - group Not Found
Error Code 4040Z - instance Not Found

500 Internal Server Error
Error Code 50001 - Kafka Error

Example request:

 

http://kafkarest1.com/consumers/group/instances/Instance1


GET /consumers/group/instance1/topic HTTP/1.1

Accept: application/vnd.kafka.binary.v1+json

 

Example response:

 

HTTP/1.1 200 OK

Content-Type: application/vnd.kafka.binary.v1+json

[

 {

   "key": "a2V5",

   "value": "dmFsdWU=",

   "partition": 1,

   "offset": 1,

 },

 {

    "key": "a2V5",

   "value": "dmFsdWU=",

   "partition": 1,

   "offset": 2,

 }

]

 
Description : Commit offsets for the consumer instance associated with group.

 

POST /consumers/:group/:instance/offsets

 

Parameters:

group (String) - consumer group id
Instance (String) - consumer instance name

Response:

JSON Object contains response objects

Status Codes:

404 Not Found
Error Code 40401 - group Not Found
Error Code 40402 - consumer instance Not Found

500 Internal Server Error
Error Code 50001 - Kafka Error

Example request:



 

POST /consumers/group/instance1/offsets HTTP/1.1

Accept: application/vnd.kafka.v1+json

 

Example response:

 

HTTP/1.1 200 OK

Content-Type: application/vnd.kafka.v1+json

[

 {

   "topic": "test",

   "partition": 1,

   "committed": 100

 },

 {

   "topic": "test",

   "partition": 2,

   "committed": 200

 },

 {

   "topic": "test2",

   "partition": 1,

   "committed": 50

 }

]

 
GET /topics/:topic_name/partitions/:partition?offset=(int)
Description : Consume messages from one partition of the topic.

Parameters:

     topic_name (String) - topic name
     partition (int) - partition number
     offset (int) - offset to fetch

Response:
    JSON Object contains response objects

Status Codes:
    404 Not Found
        Error Code 40401 - topic Not Found
        Error Code 40402 - partition Not Found
   500 Internal Server Error
       Error Code 50001 - Kafka Error

 

Example  request:

 



GET /consume/test/partitions/1?offset=1 HTTP/1.1

Accept: application/vnd.kafka.binary.v1+json

 

Example response:

 

HTTP/1.1 200 OK

Content-Type: application/vnd.kafka.binary.v1+json

[

 {

   "key": "a2V5",

   "value": "dmFsdWU=",

   "partition": 1,

   "offset": 1,

 },

 {

    "key": "a2V5",

   "value": "dmFsdWU=",

   "partition": 1,

   "offset": 2,

 }

]

 

TODO
I will update required config options and response Error codes/messages.

 

Compatibility, Deprecation, and Migration Plan

This KIP only proposes additions. There should be no compatibility issues.

Rejected Alternatives

Make Kafka Rest Server an external third-party tool

Main Reason for this KIP is to add Rest Server to Kafka. Shipping Kafka Rest Server as part of a normal Kafka release
makes it immediately available to every user that downloads Kafka. Also helps to maintain the version compatibility
between Kafka clients and Rest Server.

 

Push/Stream messages to end clients:

End clients can register for the listening of events. This can be implemented used Web socket push notifications.
But This is against kafka consumer's pull model. It is good maintain Kafka consumer's semantics.


	KIP-80: Kafka Rest Server

