
KIP-88: OffsetFetch Protocol Update

Status
Motivation
Public Interfaces
Proposed Changes
Rejected Alternatives

Status
Current state: Accepted

Discussion thread: here

JIRA: KAFKA-3853

Released: 0.10.2.0

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

This KIP was prepared thanks to valuable feedback by .Jason Gustafson

Motivation
KAFKA-3853 asks for an improvement to the option of the consumer group command for new (Java API based) consumers. This command, describe
when passed a consumer group that has no consumer (i.e., when the group state is), currently reports an error indicating that there is no active Empty
member:

$ bin/kafka-consumer-groups.sh --new-consumer --bootstrap-server localhost:9092 --describe --group group1
Note: This will only show information about consumers that use the Java consumer API (non-ZooKeeper-based
consumers).
Error: Consumer group 'group1' has no active members.

The requested improvement is returning offsets within the group (and leaving the consumer column empty) instead of returning the error message above.
The error message can still be printed to as a warning.stderr

When the group is (i.e. when there are active consumers in the group), the above command returns the associated topic partition assignment for Stable
each member of the group, and that assignment can be used to extract the corresponding committed offset(s). However, if the group state is (i.e. Empty
when there are no active consumers in the group) there is no associated topic partition info in response. Therefore, DescribeGroups DescribeGroups
response in its current protocol would not help.

The protocol can be used to extract offsets associated with given topic partitions in a consumer group. The problem is, when consumer OffsetFetch
group is in state or even when it is but not all its topics are being consumed, currently there is no way to extract all its topic partitions that it Empty Stable
has consumed from (i.e. has offset for). We can modify the behavior of protocol so it returns all topic partitions associated with the group if OffsetFetch
it is passed a value (as the list of topic partitions). null

Public Interfaces
This is the current schema for (version 1, that applies to fetching from Kafka, and not ZooKeeper).OffsetFetch

https://www.mail-archive.com/dev@kafka.apache.org/msg59608.html
https://issues.apache.org/jira/browse/KAFKA-3853
https://cwiki-test.apache.org/confluence/display/~hachikuji
https://issues.apache.org/jira/browse/KAFKA-3853

1.

2.

OffsetFetch Request (Version: 1) => group_id [topics]
 group_id => STRING
 topics => topic [partitions]
 topic => STRING
 partitions => partition
 partition => INT32

OffsetFetch Response (Version: 1) => [responses]
 responses => topic [partition_responses]
 topic => STRING
 partition_responses => partition offset metadata error_code
 partition => INT32
 offset => INT64
 metadata => NULLABLE_STRING
 error_code => INT16

The first suggestion is to use a similar / protocol and bump up the version to 2. There will be two main changes to version 1 of the Request Response
protocol in version 2:

The first change to the protocol is that if no topics (input for list of topics) are provided, the offset information of all topics (or topic partitions) null
associated with the group is returned. So the protocol will be slightly modified to define the input array as a nullable array.topics
With version 0 and 1 of the protocol, a list of topic partitions is passed as part of request, and, in return, the same topic partitions OffsetFetch
are returned. Along with each topic partition in the response there is an field for reporting any error that could occur in extracting error_code
offset for that topic partition (e.g. if the user is not authorized to access that topic partition, if the topic partition does not exist, ...). It is possible to
pass an empty array of topic partitions in request but in that scenario an error is never reported (irrespective of group or OffsetFetch
coordinator status) and an empty list is always returned in the response. In other words, there is no existing scenario, given the current protocol,
in which an empty list is returned due to some error.
But with the proposed change above (passing a null array in request) it is now possible to have an empty list of topic partitions in OffsetFetch
the response because of an error situation (e.g. if there is a coordinator related error, or if user if not authorized to access the group). Therefore, it
would not be possible to detect, for example, when the coordinator has moved to another broker or when it is still in the process of loading the
offsets. This means it would be impossible to tell if there was an error or if there were just no offsets stored for the group. To handle these
scenarios the response should be able to report an error at the top level (not associated with individual topic partitions). In fact, OffsetFetch
reporting coordinator or group related errors at the top level of the response rather than along with each topic partition is a more reasonable
solution. Topic partition specific errors can still be returned in the internal field associated with the individual topic partition.error_code

OffsetFetch Request (Version: 2) => group_id [topics]
 group_id => STRING
 topics => topic [partitions]
 topic => STRING
 partitions => partition
 partition => INT32

OffsetFetch Response (Version: 2) => [responses] error_code
 responses => topic [partition_responses]
 topic => STRING
 partition_responses => partition offset metadata error_code
 partition => INT32
 offset => INT64
 metadata => NULLABLE_STRING
 error_code => INT16
 error_code => INT16

1.
a.

b.

2.

public static final Schema OFFSET_FETCH_REQUEST_V2 = new Schema(new Field("group_id",
 STRING,
 "The consumer group id."),
 new Field("topics",
 ArrayOf.nullable
(OFFSET_FETCH_REQUEST_TOPIC_V0),
 "Topics to fetch
offsets."));

public static final Schema OFFSET_FETCH_RESPONSE_V2 = new Schema(new Field("responses",
 new ArrayOf
(OFFSET_FETCH_RESPONSE_TOPIC_V0)),
 new Field("error_code",
 INT16));

The second suggestion has to do with how the above API is accessed and called. Currently, the way the offset information for each topic partition in a Stab
 group is returned is through creating a "dummy" consumer in the group and use its interface to extract those offset information:le committed

val consumer = getConsumer()
...
... consumer.committed(new TopicPartition(topicPartition.topic, topicPartition.partition)) ...
...
})

This call makes use of the API to extract the offset of the given partition. The suggestion here is to add a method to committed OffsetFetch AdminCli
 that extracts offset information of a consumer group by making a call to API, and passing a input as list of topic partitions. That ent OffsetFetch null

will return all offsets of topic partitions associated with the consumer's group:

def listGroupOffsets(groupId: String): Map[TopicPartition, PartitionData] = {
 val coordinator = findCoordinator(groupId)
 val responseBody = send(coordinator, ApiKeys.OFFSET_FETCH, OffsetFetchRequest.
allPartitionsOffsetFetchRequest(groupId))
 val response = responseBody.asInstanceOf[OffsetFetchResponse]
 response.responseData().asScala.toMap
}

One benefit of using this method instead of using the 's method is that we no longer need to create the dummy consumer to KafkaConsumer committed
retrieve offsets. The other benefit here is that with one API call all offsets within the group are returned. Whereas, in the existing describe group
implementation, for each topic partition in the group one API call is made.

Proposed Changes
The proposal is to

Create version 2 of the API in which,OffsetFetch
in the request a value can also be passed as the list of topic partitions, and in response, offsets of all topic partitions associated null
with the group are returned.
an is returned at the top level to report coordinator or group related errors (scenarios in which an empty list is returned in error_code
the response), and to distinguish between when there is an error and when there are no stored offsets for the group.

Add a interface to that makes use of the updated API above and returns offsets of all topic listGroupOffsets AdminClient OffsetFetch
partitions associated with the consumer's group.

Compatibility, Deprecation, and Migration Plan
With respect to the first proposed change above there should be no concern when it comes to compatibility because the older APIs (versions 0 and 1) did
not accept a value for the input array. In the case where current users somehow rely on the exception raised when a value is passed to the null null
current API as the list of topic partitions, they can stick to the current implementation of the API by using version 1 of the API. The OffsetFetch
behavioral change suggested in this KIP would apply to version 2 of the API only. The addition of the field in the response is also limited to error_code
version 2 of the API and the existing clients would have to either stick to version 1 of the API, or modify their implementation to look for errors in two places
(the top level and the associated with each topic partition).error_code error_code

With respect to the added interface to there would be no issue as that interface does not exist in current implementation.AdminClient

1.

2.

3.

4.

a.
b.

Rejected Alternatives
Changing the protocol so it also returns the offset information for all topic partitions from which the group has consumed from DescribeGroups
since its creation. More detailed can be found .here
Exposing the added behavior through a new interface in , which would still imply that the dummy consumer has OffsetFetch KafkaConsumer
to be created in the group in order to retrieve offsets. More details can be found .here
Passing an empty list, instead of , to the API to get all offsets. The value was chosen to remain consistent with how some other APIs null null
handle a similar situation (e.g. API returns metadata of all topics if it is provided with a value as list of topics). More details TopicMetadata null
can be found .here
On the solution for reporting errors when there is no topic partition in the response, the following options were also considered, but set aside in
favor of the cleaner solution provided above:

inserting a "dummy" partition into the response so that we have somewhere to return an error code.
including no error code, but using a null array in the response to indicate that there was some error. If there was no error, and the group
simply had no partitions, then we return an empty array. I guess in this case, if the client receives a null array in the response, it should
assume the worst
and rediscover the coordinator and try again (because there is no way to indicate what the error is).

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=66851668
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=66852603
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=66854004

	KIP-88: OffsetFetch Protocol Update

