
Kafka Streams Data (Re)Processing Scenarios

Overview
Use Case Scenarios

Overview
This page gives an overview of data (re)processing scenarios for Kafka Streams. In particular, it summarizes which use cases are already support to what
extend and what is future work to enlarge (re)processing coverage for Kafka Streams.

Use Case Scenarios
In the list below, each scenario is described in detail with regard to use case, expected behavior, available tooling, and best practice guidelines. The goal
is to provide an comprehensive overview and step-by-step guideline for all kind of (re)processing scenarios.

The table is color coded as follows:

 for supported scenariosgreen
 for scenario that are not fully supportedyellow

missing tooling, but scenario is clear
manual workaround available

 for not supported red scenarios
hard to solve

Scenario Use Cases Expected Behavior /
Requirements

Available
Tooling

Step-by-Step Guideline/

Best Practice

Limitations/

Known Issues

External
Resources

Use this page as a feature wish list for data (re)processing.

 If your use case is missing, feel free to add it (let us know if you need access credentials:)! Any issue you http://kafka.apache.org/contact
observe with regard to (re)processing Just describe your scenario with can only be fixed if the community is aware that there is an issue.
expected behavior (there is no need to provide a solution for adding new scenarios). It would of course also be helpful if you describe why your
scenario is currently not covered.

http://kafka.apache.org/contact

1.

2.
a.

b.

3.
4.

Data
reprocessing
from scratch

development and testing
rollback after bug fixes in
production
A/B testing
demoing for customers or
other stakeholders
replay for new business
logic (Kappa architecture)

After running and
stopping an
application you want to
reset your application
back to "zero".
Thus, on restart, the
application
reprocesses your data
the same way as in its
original run (assuming
that the original input
data still exists in
Kafka in its entirety).

Requirements:

Application must start
consuming input topics
from scratch (no
committed offsets)
The application's
internal state must be
empty
Auto-created created
topics must be empty
(or deleted)

Applicat
ion
Reset
Tool:
bin
/kafka
-
stream
s-
applic
ation-
reset.
sh
Local
cleanup
API:
KafkaS
treams
#clean

 Up()

stop all running application
instances
if required:

delete and re-create output
topics manually
use different/new output
topics

run application reset tool
before restart, make sure to call Ka

 for each fkaSteams#cleanUp()
application instance

all data from
input topics
must still be
available
(i.e., no input
data is lost due
to log retention
or compaction)
no support to
handle output
topics:

by
default,
new
applicatio
n run
appends
data to
originally
used
output
topics
manual
fixed:

del
ete
and
rec
rea
te
out
put
topi
c
ma
nua
lly
cha
nge
app
lica
tion
and
use
diff
ere
nt
/ne
w
out
put
topi
cs

https://www.
confluent.io/blog
/data-
reprocessing-
with-kafka-
streams-
resetting-a-
streams-
application/
https://groups.
google.com
/forum/?
utm_medium=e
mail&utm_sourc
e=footer#!msg
/confluent-
platform
/3OrEmEM46z8
/ai5B-jHkBQAJ

Data
reprocessing
with specific
starting point
(reprocessin
g from
scratch; i.e.,
empty state)

partial rollback after bug
fixes in production
A/B testing

Similar to "Data
Reprocessing from Scratch".
However, instead of
restarting the application at
offsets zero, the user wants
to specify a specific starting
point.

Requirement:

Same as "Data
Reprocessing from
Scratch"
Allow user to specify a
(valid/consistent)
starting point (offsets?,
timestamp?)

Applicat
ion
Reset
Tool:
bin
/kafka
-
stream
s-
applic
ation-
reset.
sh
Local
cleanup
API:
KafkaS
treams
#clean
Up()

Missing:
API/tooling to
set starting
point.

Similar to "Data reprocessing from
scratch".

Manual workaround:

Use a consumer client to to seek()
desired starting offsets and commit()
than. This step must be done after the
reset tool was used and before the
application gets restarted.

see "Data
Reprocessing
from Scratch"

https://groups.
google.com
/forum/?
utm_medium=e
mail&utm_sourc
e=footer#!msg
/confluent-
platform
/3OrEmEM46z8
/ai5B-jHkBQAJ

Data
reprocessing
using old
application
state

A/B testing with stateful
start
rollback after bug fix in
production (application was
redeployed include a bug
at time X, go back to X and
reprocess data with fixed
application)

Requirement:

New application needs
(historical) state of old
application at point X.

http://data-
artisans.com
/turning-back-
time-savepoints/
https://www.
mapr.com/blog
/savepoints-
apache-flink-
stream-
processing-
whiteboard-
walkthrough

https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://www.confluent.io/blog/data-reprocessing-with-kafka-streams-resetting-a-streams-application/
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://cwiki-test.apache.org/confluence/display/KAFKA/Kafka+Streams+Application+Reset+Tool
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/confluent-platform/3OrEmEM46z8/ai5B-jHkBQAJ
http://data-artisans.com/turning-back-time-savepoints/
http://data-artisans.com/turning-back-time-savepoints/
http://data-artisans.com/turning-back-time-savepoints/
http://data-artisans.com/turning-back-time-savepoints/
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough
https://www.mapr.com/blog/savepoints-apache-flink-stream-processing-whiteboard-walkthrough

1.

2.

Processing
cold data development

A/B testing
processing cold/old
/offline topics (i.e.,
process topics that do
not have active
producers)
application stops
automatically after it
processed all available
data

Requirement:

application should
have an auto-stop
feature (KIP-95)

 Workaround

Manual stop required at the moment:

monitor consumer lag via bin
/kafka-consumer-groups.sh
when consumer lag is zero, stop ap

manuallyplication

Incremental
processing
(time driven)

"batch like" processing start application in
regular intervals (like
cron job) and
application
automatically stops
processing after a
processing data for a
specific time (wall-
clock)

Not required.
Put a sleep() after application
startup and close application after
sleep-time passed. To make it
robust for failure restart, sleep()
should not get a hard coded
parameter passed in, but rather the
difference to endTime -

.startupTime

or

Run app "forever" as for regular
stream processing case and
terminate application from outside
when "stop time" is reached.

not very
precise with
regard to event-
time
processing (i.
e., stopping
point is not
related to
application
progress)

Incremental
processing
(data driven)

"batch like" processing start application in
regular intervals (like
cron job)
application stops
automatically at some
point
on application restart,
it resumes from
previous run
while application is
running, new data
might be appended to
input topics

Requirement:

 application must have
an auto-stop feature (K

)IP-95

 Workaround

follow approach for "Incremental
processing (time driven)"

processing
elapse time
must be
shorter than
startup interval
(i.e., start
processing
each hour,
processing
takes less than
an hour)

http://stackoverfl
ow.com
/questions
/39048923/stop-
a-kafka-
streams-app

Offline
application
upgrade

application bug fixes /
improvements in production

an application should
be replaced with a
newer version
new version resumes
where old version left
off
no reprocessing of old
data

Not required.
stop all running application
instances
start new version of your
application (same application.

)id

New and old application must be
"compatible".

Compatible changes:

changing a filter condition
inserting a new filters/map (record-
by-record operation)

Incompatible changes:

changing the structure of topology
DAG
changing data types of stateful
operations (like aggregations /
joins)

works only if
application
downtime is
acceptable
new application
must have
similar
structure than
old one
Only newly
produced
output is "fixed"

Online
application
upgrade

application bug fixes /
improvements in production
downstream application
consumer data live and are
not interesting in
"correcting" previous result
(because computation
happened already and
there is no interest in
"correcting" old stuff)

an application should
be replaced with a
newer version
new application is
deployed in parallel
when the new
application is "ready to
take over", the old
application is stopped
new application might
start from an older
offset and reprocess
some data (w/ or w/o
initial state)

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-95%3A+Incremental+Batch+Processing+for+Kafka+Streams
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-95%3A+Incremental+Batch+Processing+for+Kafka+Streams
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-95%3A+Incremental+Batch+Processing+for+Kafka+Streams
http://stackoverflow.com/questions/39048923/stop-a-kafka-streams-app
http://stackoverflow.com/questions/39048923/stop-a-kafka-streams-app
http://stackoverflow.com/questions/39048923/stop-a-kafka-streams-app
http://stackoverflow.com/questions/39048923/stop-a-kafka-streams-app
http://stackoverflow.com/questions/39048923/stop-a-kafka-streams-app
http://stackoverflow.com/questions/39048923/stop-a-kafka-streams-app

Reprocessin
g of
"historical"
data

reprocess all data from
yesterday / last week / April
"batch like" processing

old data should be
reprocessed (new
version of application
or completely different
application)
result must be exact
with regard to even-
time (i.e., not include
any older data and
also take late arrivals
into account)
new result might
replace old results (i.
e., update downstream
database)

	Kafka Streams Data (Re)Processing Scenarios

