
1.

2.

3.

4.

KIP-93: Improve invalid timestamp handling in Kafka
Streams

Status
Motivation
Proposed Changes
Test Plan
Rejected Alternatives

Status
Current state: Accepted [VOTE] KIP-93: Improve invalid timestamp handling in Kafka Streams

Discussion thread: [DISCUSS] KIP-93: Improve invalid timestamp handling in Kafka Streams

JIRA:

Released: 0.10.2.0

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Currently, Kafka Streams does not handle invalid (i.e., negative) timestamps returned from the gracefully, but fails with an TimestampExtractor
exception, because negative timestamps cannot get handled in a meaningful way for any time based operators like window aggregates or joins.

Negative timestamp can occur for several reason.

You consume a topic that is written by old Kafka producer clients (i.e., version 0.9 or earlier), which don't use the new message format, and thus
meta data timestamp field defaults to if the topic is configured with -1 log.message.timestamp.type=CreateTime
You consume a pre-0.10 topic after upgrading your Kafka cluster from 0.9 to 0.10: here all the data that was generated with 0.9 producers is not
compatible with the 0.10 message format (and defaults to timestamp -)1
You consume a topic that is being written to by a third-party producer client that allows for embedding negative timestamps (KafkaProducer
does check for negative timestamp an raises an exception for this case preventing invalid timestamp in the first place)
The user provides a custom timestamp extractor that extracts a timestamp for the payload data (i.e., key-value pair), and this custom extractor
might return negative timestamps.

If records happen to have negative timestamps (case 1 and 2), this KIP does not improve the situation much. However, if only records have all some
negative timestamps (could happen for case 3 and 4 above), we want to improve the situation and make it easier for the user to process such topics. Right
now, it is not possible to process these topics at all because the Streams application will raise an exception at some point (only a global exception handler
could get registered to prevent the application to die, however, this does not solve the issue as the dies, partitions get reassigned and the StreamThread

.next thread hits the same issue again, until not threads are left and the application is dead)

Public Interfaces
The signature of TimestampExtractor will be changed, to give the user a way to "infer" a timestamp from the current processing progress (i.e.,
internally tracked) if no valid TS can be extracted from the record. stream-time

// current interface
public interface TimestampExtractor {
 long extract(ConsumerRecord<Object, Object> record);
}

// new interface
public interface TimestampExtractor {
 long extract(ConsumerRecord<Object, Object> record, long previousTimestamp); // previousTimestamp provides
the TS from the latest extracted valid TS for the same partition the current record belongs to
}

 Unable to render Jira issues macro, execution

error.

http://search-hadoop.com/m/Kafka/uyzND1AhGIwTLttc1
http://search-hadoop.com/m/Kafka/uyzND1Dw6RHRuvKG

Furthermore, default implementation of is replaces and new classes will be added to provide more predefined ConsumerRecordTimestampExtractor
timestamp extractors (see details below):

FailOnInvalidTimestamp (new default extractor, replacing ; behavior stays the same)ConsumerRecordTimestampExtractor
LogAndSkipOnInvalidTimestamp
UsePreviousTimeOnInvalidTimestamp

Proposed Changes
We want to change Streams to an auto-drop behavior for records with negative timestamps (without any further user notification about any dropped
records) to enable users to "step over" those records and keep the app running (instead of running into a runtime exception, which would typically bring
down the whole application instance). To guard the user from silently dropping messages by default (and to keep the current fail-fast behavior), we change
the default extractor to raise an exception if the embedded 0.10 message timestamp is negative, which ConsumerRecordTimestampExtractor
includes the case where there is no 0.10 timestamp embedded in the message.

Furthermore, we want to add some reference implementations of timestamp extractor for covering common use cases (incl. case 3 above):

a "drop-and-log" extractor: this extractor writes a WARN log message in case a negative timestamp is extracted (the record with negative
timestamp will ultimately be skipped by Streams). The idea is that users want to skip over records with negative timestamps, but still get a some
information about any such dropped records instead of silently "losing" data. Users can then leverage monitoring tools to track which, when, and
how many messages are being dropped.
a "timestamp inferring" extractor: this extractor tries to infer a new timestamp for a record if the originally extracted timestamp was negative. This
allows to "fix" missing timestamps, enabling the processing of all records without data loss

For any other behavior, users can still provide a custom timestamp extractor implementation. As the interface will change, users TimestampExtractor
cannot reuse old extractors and thus are made aware of the new behavior, thus case 4 is also covered.

Additionally, we want to add a new streams metric that reports the number of skipped record (as absolute count or percentage or both) to give the user a
way to monitor if messages get skipped.

Compatibility, Deprecation, and Migration Plan

 This is a breaking, incompatible change because interface gets changed. However, it only affect uses that provide a custom TimestampExtractor

timestamp extractor. By default no code change is required and the overall behavior is the same as before this KIP (using default timestamp extractor user
gets an exception in case of a negative timestamp).

Even if the exception is throw from a different point and the exception message changes (the exception type is the same:) StreamsException
the use cannot recover from the exception anyway (i.e., user cannot recover with current behavior and this will not change)

Required code changes:

Custom timestamp extractors must be updated:
recompile to avoid runtime exception
code change to adapt to new interface (to make it compile)

Test Plan
The feature can be tested via unit tests.

Rejected Alternatives
add a new error handler that is called if a negative timestamp is detected

this error handler raises an exception by default
user can provide custom error handle via StreamsConfig
rejected because it separates the root-case of negative timestamps from reacting/fixing those

for custom timestamp extractors, user can check for negative timestamps in the first place (directly after extracting it and before
returning it to Streams) and react accordingly
thus, error handle is too clumsy to use and too hard to reason about from a user perspective

	KIP-93: Improve invalid timestamp handling in Kafka Streams

