
1.
2.
3.

KIP-103: Separation of Internal and External traffic

Status
Motivation
Public Interfaces

Broker Configuration
ZooKeeper
Protocol
Client

Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Adopted

Discussion thread: here

JIRA:
 Unable to render Jira issues macro, execution

error.
 (0.10.2.0)

 Unable to render Jira issues macro, execution

error.
 (0.11.0.0)

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
During the 0.9.0.0 release cycle, support for per broker was introduced. Each listener is associated with a security protocol, ip/host and multiple listeners
port. When combined with the advertised listeners mechanism, there is a fair amount of flexibility with one limitation: at most one listener per security
protocol in each of the two configs (and).listeners advertised.listeners

In some environments, one may want to differentiate between external clients, internal clients and replication traffic independently of the security protocol
for cost, performance and security reasons. A few examples that illustrate this:

Replication traffic is assigned to a separate network interface so that it does not interfere with client traffic.
External traffic goes through a proxy/load-balancer (security, flexibility) while internal traffic hits the brokers directly (performance, cost).
Different security settings for external versus internal traffic even though the security protocol is the same (e.g. different set of enabled SASL
mechanisms, authentication servers, different keystores, etc.)

As such, we propose that Kafka brokers should be able to define multiple listeners for the same security protocol for binding (i.e. sharinlisteners) and
g (i.e. so that internal, external and replication traffic can be separated if required.advertised.listeners)

Public Interfaces

Broker Configuration

A new broker config will be introduced so that we can map a listener name to a security protocol. The config listener.security.protocol.map
value should be in the CSV Map format that is currently used by . The config value should follow map max.connections.per.ip.overrides
semantics: each key should only appear once, but values may appear multiple times. For example, the config could be defined in the following way to
match the existing behaviour:

listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

To ensure compatibility with existing configs, we propose the above as the default value for the new config.

 Unable to render Jira issues macro, execution

error.

 Unable to render Jira issues macro, execution

error.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201612.mbox/%3CCAD5tkZYpqcRbf2ehDy-VOX7YJSJOA0iVjn%3Dzewei0ZpNsSeNnQ%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-1809

The next step is to change the validation of and so that the listener name has to be one of the keys in advertised.listeners listeners listener.
 (only security protocols are allowed currently). For example, the following would configure a broker with two different host:port security.protocol.map

pairs mapped to the same security protocol in two cases:

listener.security.protocol.map=CLIENT:SASL_PLAINTEXT,REPLICATION:PLAINTEXT,INTERNAL_PLAINTEXT:PLAINTEXT,
INTERNAL_SASL:SASL_PLAINTEXT
advertised.listeners=CLIENT://cluster1.foo.com:9092,REPLICATION://broker1.replication.local:9093,
INTERNAL_PLAINTEXT://broker1.local:9094,INTERNAL_SASL://broker1.local:9095
listeners=CLIENT://192.1.1.8:9092,REPLICATION://10.1.1.5:9093,INTERNAL_PLAINTEXT://10.1.1.5:9094,
INTERNAL_SASL://10.1.1.5:9095

We then introduce a second broker config as an alternative to security.inter.broker.protocol:

inter.broker.listener.name=REPLICATION

It is an error to set both at the same time. and security.inter.broker.protocol inter.broker.listener.name inter.broker.listener.
will be by default, which means that the protocol will be used by default (as is currently the case).name null PLAINTEXT

Finally, we make it possible to provide different security (SSL and SASL) settings for each listener name by adding a normalised prefix (the listener
name is lowercased) to the config name. For example, if we wanted to set a different keystore for the CLIENT listener, we would set a config with name li

If the config for the listener name is not set, we will fallback to the generic config (i.e. stener.name.client.ssl.keystore.location. ssl.
) for compatibility and convenience. For the SASL case, some configs are provided via a JAAS file, which consists of one or more keystore.location

entries. The broker currently looks for an entry named We will extend this so that the broker first looks for an entry with a lowercased KafkaServer.
listener name followed by a dot as a prefix to the existing name. For the CLIENT listener example, the broker would first look for wiclient.KafkaServer
th a fallback to , if necessaryKafkaServer .

ZooKeeper

Version 4 of the broker registration data stored in ZooKeeper will have listener names instead of security protocols in the elements of the endpoints
array and an additional field. The latter is not strictly needed if we assume that all brokers have the same config, listener.security.protocol.map
but it would make config updates trickier (e.g. two rolling bounces would be required to add a new mapping from listener name to security protocol). Also,
we add an additional field instead of changing the schema to allow for rolling upgrades.endpoints

{
 "version": 4,
 "jmx_port": 9999,
 "timestamp": 2233345666,
 "host": "localhost",
 "port": 9092,
 "rack": "rack1",
 "listener_security_protocol_map": {
 "PLAINTEXT": "PLAINTEXT",
 "SSL": "SSL",
 "SASL_PLAINTEXT": "SASL_PLAINTEXT",
 "SASL_SSL": "SASL_SSL"
 },
 "endpoints": [
 "CLIENT://cluster1.foo.com:9092",
 "REPLICATION: //broker1.replication.local:9093",
 "INTERNAL_PLAINTEXT: //broker1.local:9094",
 "INTERNAL_SASL://broker1.local:9095"
]
}

Protocol

 UpdateMetadataRequestVersion 3 of will be introduced and the elements of the array would also have a field.end_points listener_name

1.
2.
3.
4.

1.

2.

UpdateMetadata Request (Version: 3) => controller_id controller_epoch [partition_states] [live_brokers]
 controller_id => INT32
 controller_epoch => INT32
 partition_states => topic partition controller_epoch leader leader_epoch [isr] zk_version [replicas]
 topic => STRING
 partition => INT32
 controller_epoch => INT32
 leader => INT32
 leader_epoch => INT32
 isr => INT32
 zk_version => INT32
 replicas => INT32
 live_brokers => id [end_points]
 id => INT32
 end_points => port host listener_name (new) security_protocol_type
 port => INT32
 host => STRING
 listener_name => String (new)
 security_protocol_type => INT16

Client

Listener names only exist in the brokers, clients never see them.

Proposed Changes
We would have to change a number of places in the code that currently use as a key to use instead. A few SecurityProtocol the listener name
examples:

Acceptor thread
Metadata request handler
ReplicaManager
Broker class

The changes are mostly mechanical and don't affect public API.

We would also have to change the various authenticator classes to look for security configs for the relevant listener name before falling back to the generic
ones.

As stated previously, clients never see listener names and will make metadata requests exactly as before. The difference is that the list of endpoints they
get back is restricted to the listener name of the endpoint where they made the request. In the example above, let's assume that all brokers are configured
similarly and that a client sends a metadata request to it reaches broker1's 192.1.1.8:9092 interface via a load balancer. :9092 andcluster1.foo.com
The security protocol would be and the metadata response would contain for each broker SASL_PLAINTEXT host=cluster1.foo.com,port=9092
returned.

The exception is ZooKeeper-based consumers. These consumers retrieve the broker registration information directly from ZooKeeper and will choose the
first listener with PLAINTEXT as the security protocol (the only security protocol they support).

Compatibility, Deprecation, and Migration Plan
As mentioned previously, the default value of maps the existing security protocols to a listener with the same listener.security.protocol.map
name to maintain compatibility:

listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

For users upgrading, they should only use listener names once all the brokers have been upgraded to a version that supports listener names. ZooKeeper-
based consumers will use the first listener with PLAINTEXT as the security protocol, so listener ordering is important in such cases.

Rejected Alternatives
Instead of adding the config, we could extend the protocol part of the listener definition to include both listener.security.protocol.map
the listener name and security protocol. For example, This is appealing from a clarity CLIENT+SASL_PLAINTEXT://192.1.1.8:9092.
perspective (the listeners are fully defined in a single config value), but it may lead to duplication between and listeners advertised.

. A way to avoid that issue (at the cost of loss of symmetry) would be for to only include the listener name listeners advertised.listeners
(we can infer the security protocol by looking at the entry with the same name).listeners

http://clusterX.foo.com

2.

3.

Assume that is the same in every broker. The slight benefit in terms of smaller broker registration JSON listener.security.protocol.map
is not worth the additional operational complexity when it comes to changing the config values in a running cluster (two rolling upgrades would be
needed in some simple cases).
Using hard-coded listener domains for internal and replication traffic. The config format is simpler and there's less scope for hard to understand
configs. The main disadvantage is that it's a bit too specific and may need to be extended again as more sophisticated use cases appear. The
current proposal is more general and it seems like a natural evolution of the existing system.

	KIP-103: Separation of Internal and External traffic

