
KIP-105: Addition of Recording Level for Sensors

Status
Motivation
Public Interfaces
Proposed Changes
Rejected Alternatives
Future work

.

Status
Current state: Accepted

Discussion thread: here

JIRA: KAFKA-3715 Higher granularity streams metrics

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Recording metrics is expensive. There are scenarios where, for debug purposes, tens or hundreds of metrics need to be recorded. The
performance impact of always recording can be as high as 50% at times (see graph below showing some Kafka Streams microbenchmarks. This
graph is also part of PR for the JIRA for this KIP. Compare the yellow bar which is with all metrics enabled, with any other bar). We would like a
way to control which metrics are recorded to address this performance problem.

This KIP proposes the addition of a RecordingLevel in Sensor.java. This associates each sensor with a recording level and the metrics and
computations associated with the sensor are recorded or calculated only if the metric config of the client requires these metrics to be recorded.
For example, a sensor associated with a RecordingLevel.DEBUG recording level will only record metrics, (and correspondingly compute the time.
milliseconds or nanoseconds if required by its metrics), if the client config for metric recording levels is set to DEBUG. Note that the sensor will
still be registered and polled by any reporters, however the expensive part of updating its metrics will not be done. This provides a mechanism for
clients to toggle metric granularity without a change to individual sensors, and we do not perform unnecessary intensive computations associated
on metrics which must not be recorded.
An objective of this KIP is to leave open the possibility of changing the recording level at runtime, although it is not in the scope of this KIP to
implement that right now.

Public Interfaces
Changes to public class Sensor.java to include Sensor.RecordingLevel
Addition of static configuration string in CommonClientConfigs.java
Exposing that configuration string in StreamsConfig.java and KafkaConfig.scala since both use CommonClientConfigs.

Proposed Changes

http://mail-archives.apache.org/mod_mbox/kafka-dev/201612.mbox/%3CCAEhVOwHkpxkotbT72Yuc9pZM61ctEZ_sZx33YXqRY4bc8xhx3A%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-3715

The constructor of Sensor.java now takes a Sensor.RecordingLevel as a parameter. This is an enum which has DEBUG and INFO recording
levels, and can be extended in future to include other levels.

Sensor(Metrics registry, String name, Sensor[] parents, MetricConfig config, Time time,
long inactiveSensorExpirationTimeSeconds, RecordingLevel recordingLevel)

The ClientConfig will have a new option called ' which is set to match the recording levels of INFO or DEBUG while metrics.recording.level'
defining the consumer config.
In Sensor.java the shouldRecord() method is used to compare the value of metric recording level in the consumer config and the RecordingLevel
associated with the sensor, to determine if metrics should recorded.

From Sensor.java

 /**
 * @return true if the sensor's recording level indicates that the metric will be recorded, false otherwise
 */
public boolean shouldRecord() {
 . .shouldRecord(.recordingLevel())return this recordingLevel config ;
}

From nested enum, Sensor.RecordingLevel

public boolean shouldRecord(RecordingLevel configLevel) {final
 (configLevel.equals()) {if DEBUG
 return true;
} { else
 configLevel.equals()return this ;
}
}

Further, since both StreamsConfig.java and KafkaConfig.scala use CommonClientConfigs, we also expose that field in both classes respectiv
ely.
Note that any implementations have access to the recording level via MetricReporter KafkaMetric.

. Furthermore, the MetricReporters can retrieve the active config for the config().recordingLevel()
recording level via the method.configure

Compatibility, Deprecation, and Migration Plan
no migration plan needed, backward compatible constructor for Sensor.java which adds RecordingLevel.INFO where a recording level is not
specified.

Rejected Alternatives
We considered whether we want to register a DEBUG sensor at all if the config is INFO. Currently we do register it, but we do not record any
values. This was rejected because it would add complexity to Sensor.java. A client could attempt to register a metric and report a metric against a
sensor which is not internally registered.
Similarly, we could register a DEBUG sensor if the config is INFO, but have the reporter not poll it. Again this would add some complexity that
might not be warranted since the expensive part this KIP tries to address is the management of metrics associated with a sensor.

Future work
The KIP focuses on one problem only, which is the overhead of computing metrics. It allows for a subsequent JIRA to have a way to change the
levels at runtime via JMX. It also allows for a subsequent JIRA to provide more tags to the metrics reporter if desired (e.g., "debug", "info") so that
the user has a debug or info dashboard. In other words, the built in JMX reporter will not make use of the recording level info in this KIP.
It may be useful to allow specifying different recording levels for different hierarchies of sensors (similar to logging levels for different loggers).

	KIP-105: Addition of Recording Level for Sensors

