
KIP-107: Add deleteRecordsBefore() API in AdminClient

Status
Motivation

1) Java API
2) Protocol
3) Checkpoint file
4) Script

Proposed Changes
1) Interaction between user application and brokers
2) Routine operation in the broker
3) API Authorization
4) ListOffsetRequest

Test Plan
- Unit tests to validate that all the individual components work as expected. - Integration tests to ensure that the feature works correctly end-to-
end.

Status
Current state: Accepted

Discussion thread: here

JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka can be used in a stream processing pipeline to pass intermediate data between processing jobs. The amount of intermediate data generated from
stream processing jobs can taken a large amount of disk space in the Kafka. It is important that we can delete this data soon after it is consumed by
downstream application, otherwise we have to pay significant cost to purchase disks for Kafka clusters to keep those data.

However, Kafka doesn’t provide any mechanism to delete data after data is consumed by downstream jobs. It provides only time-based and size-based
log retention policy, both of which are agnostic to consumer’s behavior. If we set small time-based log retention for intermediate data, the data may be
deleted even before it is consumed by downstream jobs. If we set large time-based log retention, the data will take large amount of disk space for a long
time. Neither solution is good for Kafka users. To address this problem, we propose to add a new admin API which can be called by user to delete data
that is no longer needed.

Note that this KIP is related to and supersedes .KIP-47

Public Interfaces

1) Java API

- Add the following API in Admin Client. This API returns a future object whose result will be available within RequestTimeoutMs, which is configured when
user constructs the AdminClient.

Future<Map<TopicPartition, DeleteDataResult>> deleteRecordsBefore(Map<TopicPartition, Long> offsetForPartition)

- DeleteDataResult has the following two fields, which tells user if the data has been successfully deleted for the corresponding partition.

DeleteDataResult(long: low_watermark, error: Exception)

2) Protocol

Create DeleteRecordsRequest

http://mail-archives.apache.org/mod_mbox/kafka-dev/201501.mbox/%3CCAOeJiJh6Vkkca85bWYgkeOZ8rC6%2BKDh7zzq8vMKECL_7PNExTA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-4586
https://cwiki.apache.org/confluence/display/KAFKA/KIP-47+-+Add+timestamp-based+log+deletion+policy

PurgeRequest

DeleteRecordsRequest => topics timeout
 topics => [DeleteRecordsRequestTopic]
 timeout => int32

DeleteRecordsRequestTopic => topic partitions
 topic => str
 partitions => [DeleteRecordsRequestPartition]

DeleteRecordsRequestPartition => partition offset
 partition => int32
 offset => int64 // offset -1L will be translated into high_watermark of the partition when leader receives
the request.

Create DeleteRecordsResponse

PurgeReponse

DeleteRecordsResponse => topics
 topics => [DeleteRecordsResponseTopic]

DeleteRecordsResponseTopic => topic partitions
 topic => str
 partitions => [DeleteRecordsResponsePartition]

DeleteRecordsResponsePartition => partition low_watermark error_code
 partition => int32
 low_watermark => int64
 error_code => int16

Add a log_start_offset field to FetchRequestPartition

FetchRequestPartition

FetchRequestPartition => partition fetch_offset low_watermark max_bytes
 partition => int32
 fetch_offset => int64
 log_start_offset => int64 <-- NEW. If it is issued from consumer, the value is 0. Otherwise, this is the
log_start_offset of this partition on the follower.
 max_bytes => int32

Add a field to FetchResponsePartitionHeaderlog_start_offset

FetchResponsePartitionHeader

FetchResponsePartitionHeader => partition error_code high_watermark low_watermark
 partition => int32
 error_code => int16
 high_watermark => int64
 log_start_offset => int64 <-- NEW. This is the low_watermark of this partition on the leader.

3) Checkpoint file

We create one more checkpoint file, named " ", in every log directory. The checkpoint file will have the same format as existing log-begin-offset-checkpoint
checkpoint files (e.g. replication-offset-checkpoint) which map TopicPartition to Long.

4) Script

Add kafka-delete-data.sh that allows user to delete data in the command line. The script requires for the following arguments:

- bootstrap-server. This config is required from user. It is used to identify the Kafka cluster.
- command-config. This is an optional property file containing configs to be passed to Admin Client.
- delete-offset-json-file. This config is required from user. It allows user to specify offsets of partitions to be delete. The file has the following format:

{
 "version" : int,
 "partitions" : [
 {
 "topic": str,
 "partition": int,
 "offset": long
 },
 ...
]
}

Proposed Changes
The idea is to add new APIs in Admin Client (see KIP-4) that can be called by user to delete data that is no longer needed. New request and response
needs to be added to communicate this request between client and broker. Given the impact of this API on the data, the API should be protected by Kafka’
s authorization mechanism described in KIP-11 to prevent malicious or unintended data deletion. Furthermore, we adopt the soft delete approach because
it is expensive to delete data in the middle of a segment. Those segments whose maximum offset < offset-to-delete can be deleted safely. Brokers can
increment log_start_offset of a partition to offset-to-delete so that data with offset < offset-to-delete will not be exposed to consumer even if it is still on the
disk. And the will be checkpointed periodically similar to high_watermark to be persistent. log_start_offset

Note that the way broker handles DeleteRecordsRequest is similar to how it handles with ack = all and isr=all_live_replicas, e.g. the ProduceRequest
leader waits for all followers to catch up with its , doesn't expose message below , and checkpoints log_start_offset log_start_offset log_start

 periodically. The of a partition will be the minimum of all replicas of this partition and this value will be _offset low_watermark log_start_offset
returned to user in DeleteRecordsResponse.

Please refer to public interface section for our design of the API, request and response. In this section we will describe how broker maintains low
watermark per partition, how client communicates with broker to delete old data, and how this API can be protected by authorization.

1) Interaction between user application and brokers

1) User application determines the maximum offset of data that can be deleted per partition. This information is provided to as deleteRecordsBefore()
Map<TopicPartition, Long>. If users application only knows timestamp of data that can be deleted per partition, they can use offsetsForTimes() API to
convert the cutoff timestamp into per partition before providing the map to deleteRecordsBefore() API.offsetToDelete

2) Admin Client builds DeleteRecordsRequest using the offsetToDelete from () parameter and the is taken deleteRecordsBefore requestTimeoutMs
from the constructor. One is sent to each broker that acts as leader of any partition in the request. The request AdminClient DeleteRecordsRequest
should only include partitions which the broker leads.

3) After receiving the , , the leader first sets DeleteRecordsRequest for each partition in the DeleteRecordsRequest offsetToDelete to high_waterm
 if ark offsetToDelete is -1L. It then sets of leader replica to (,) if log_start_offset max log_start_offset offsetToDelete offsetToDelete <= high_w

. Tatermark hose segments whose largest offset < will be deleted by the leader.log_start_offset

4) The leader puts the into a . The can be completed when DeleteRecordsRequest DelayedOperationPurgatory DeleteRecordsRequest
results for all partitions specified in the DeleteRecordsRequest are available. The result of a partition will be available within RequestTimeoutMs and it is
determined using the following logic:

If of this partition on all live followers is larger than or equal to the offsetToDelete, the result of this partition will be its log_start_offset low_w
, which is atermark the minimum log_start_offset of all its live replicas.

If of this partition is smaller than the offsetToDelete, the result of this partition will be .high_watermark OffsetOutOfRangeException
If the leadership of this partition moves to another broker, the result of this partition will be NotLeaderException
If the result of this partition is not available after , the result of this partition will be RequestTimeoutMs TimeoutException

5) The leader sends with its to followers.FetchResponse log_start_offset

https://cwiki.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations
https://cwiki.apache.org/confluence/display/KAFKA/KIP-11+-+Authorization+Interface

6) Follower sets replica's to the max(of leader,). It also deletes those log_start_offset log_start_offset of local replicalog_start_offset
segments whose largest offset < .log_start_offset

7) Follower sends with replica's to the leader.FetchRequest log_start_offset

8) The leader updates of each follower. If the can be completed, the leader removes the log_start_offset DeleteRecordsRequest DeleteRecord
 from and sends with the results (i.e. low_watermark or error) for the specified sRequest DelayedOperationPurgatory DeleteRecordsResponse

set of partitions.

9) If admin client does not receive from a broker within , the of the partitions on DeleteRecordsResponse RequestTimeoutMs DeleteDataResult
that broker will be (low_watermark = -1, error = TimeoutException). Otherwise, the of each partition will be DeleteDataResult DeleteDataResult
constructed using the and the of the corresponding partition which is read from the received from its low_watermark error DeleteDataResponse
leader broker. deleteRecordsBefore will unblock and return when o(...).get() Map<TopicPartition, DeleteDataResult> DeleteDataResult
f all partitions specified in the param are available.offsetForPartition

2) Routine operation in the broker

- Broker will delete those segments whose largest offset < .log_start_offset

- Only message with offset >= can be sent to consumer.log_start_offset

- When a segment is deleted due to log retention, broker updates to max(, smallest offset in the replica's log)log_start_offset log_start_offset

- Broker will checkpoint for all replicas periodically in the file "log-begin-offset-checkpoint", in the same way it checkpoints log_start_offset high_wat
 of replicas. The checkpoint file will have the same format as existing checkpoint files which map TopicPartition to Long.ermark

3) API Authorization

Given the potential damage that can be caused if this API is used by mistake, it is important that we limit its usage to only authorized users. For this
matter, we can take advantage of the existing authorization framework implemented in KIP-11. deleteRecordsBefore() will have the same
authorization setting as deleteTopic(). Its operation type is be DELETE and its resource type is TOPIC.

4) ListOffsetRequest

 of a partition will be used to decide the smallest offset of the partition that will be exposed to consumer. It will be returned when log_start_offset
smallest_offset option is used in the ListOffsetRequest.

Compatibility, Deprecation, and Migration Plan
This KIP is a pure addition, so there is no backward compatibility concern.

 The KIP changes the inter-broker protocol. Therefore the migration requires two rolling bounce. In the first rolling bounce we will deploy the new code but
broker will still communicate using the existing protocol. In the second rolling bounce we will change the config so that broker will start to communicate with
each other using the new protocol.

Test Plan

- Unit tests to validate that all the individual components work as expected.

- Integration tests to ensure that the feature works correctly end-to-end.

Rejected Alternatives

- Using committed offset instead of an extra API to trigger data delete operation. Delete data if its offset is smaller than committed offset of all consumer
groups that need to consume from this partition.
This approach is discussed in . The advantage of this approach is that it doesn't need coordination of user applications to determine when KIP-68 deleteR

() can be called, which can be hard to do if there are multiple consumer groups interested in consuming this topic. The disadvantage of ecordsBefore
this approach is that it is less flexible than () API because it re-uses committed offset to trigger data delete operation. Also, it deleteRecordsBefore
adds complexity to broker implementation and would be more complex to implement than the () API. An alternative approach is deleteRecordsBefore
to implement this logic by running an external service which calls () API based on committed offset of consumer groups.deleteRecordsBefore

- Leader sends DeleteRecordsResponse without waiting for of all followers to increase above the cutoff offsetlow_watermark
This approach would be simpler to implement since it doesn't require DelayedOperationPurgatory for DeleteRecordsRequest. The leader can reply to
DeleteRecordsRequest faster since it doesn't need to wait for followers. However, the deleteRecordsBefore() API would provide weaker guarantee in this

https://cwiki.apache.org/confluence/display/KAFKA/KIP-11+-+Authorization+Interface
https://cwiki.apache.org/confluence/display/KAFKA/KIP-68+Add+a+consumed+log+retention+before+log+retention

approach because the data may not be deleted if the leader crashes right after it sends DeleteRecordsResponse. It will be useful to know for sure whether
the data has been deleted, e.g. when user wants to delete problematic data from upstream so that downstream application can re-consume clean data, or
if user wants to delete some sensitive data.

- Delete data on only one partition by each call to deleteRecordsBefore (...)
This approach would make the implementation of this API simpler, and would be consistent with the existing seek(TopicPartition partition, long offset) API.
The downside of this approach is that it either increases the time to delete data if the number of partitions is large, or it requires user to take extra effort to
parallelize the deleteRecordsBefore(...). This API may take time longer than seek() for a given partition since the broker needs to wait for follower's action
before responding to deleteDataRequest. Thus we allow user to specify a map of partitions to make this API easy to use.

	KIP-107: Add deleteRecordsBefore() API in AdminClient

