
KIP-111: Kafka should preserve the Principal generated by
the PrincipalBuilder while processing the request received
on socket channel, on the broker.

Status
Motivation
New or Changed Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: Closed (Covered by KIP-189)

Discussion thread:) ()(Original Archive Markmail

JIRA: KAFKA-4454

Released: <Kafka Version>

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka allows users to plugin a custom and a custom by specifying the classpath of the corresponding classes in the PrincipalBuilder Authorizer
config.

When a Kafka broker receives request bytes from clients over the socket channel, it reconstructs the request which is then handed over to the request
handler threads (a.k.a API threads) to process the request. In the process of doing this, the Kafka broker constructs a object that holds a Session KafkaP

 and client's socket IP address. rincipal The KafkaPrincipal includes the type of the client principal ("User" as of now) and the name of the Princip
, generated by the . The interface includes an method, that is invoked on every request that is received al PrincipalBuilder Authorizer authorize(...)

by the Kafka broker. If the broker has a custom configured, it will delegate the call to the custom implementation. The Authorizer authorize(...) authorize
 method takes in the object, requested and the on which the operation is requested, as method parameters and (...) Session Operation Resource

returns true or false depending on the configured ACLs as follows :

def authorize(session: Session, operation: Operation, resource: Resource): Boolean

However, the principals generated by the plugged in may contain additional custom fields, and the user's PrincipalBuilder Authorizer
implementation may need to access those fields in order to enforce ACLs correctly for those principals. Unfortunately, Kafka currently only extracts the
name of the when constructing the object as shown below, and loses the additional information at runtime:Principal Session

val session = RequestChannel.Session(new KafkaPrincipal(KafkaPrincipal.USER_TYPE, channel.principal.getName),
channel.socketAddress) // (custom fields in principal if any are not passed through)

It is important to note that Java's API is opaque and different Kafka service providers can have custom implementations of the intPrincipal Principal
erface with additional features as per their requirements. Since Kafka allows users to plug in a custom and a custom , PrincipalBuilder Authorizer
it does not make sense to extract only the name of the and ignore the other fields in the generated (which may be required by the Principal Principal
custom Authorizer).

This issue can be addressed if Kafka preserves the original object when it processes the incoming request, before handing it over to the API Principal
threads. The will then be able to access this object and use it to verify the ACLs.Authorizer Principal

New or Changed Public Interfaces
This KIP introduces a change to class to accept a parameter of type instead of type.Session Java Principal KafkaPrincipal

This change will not affect the default ACL () as we would generate a from the Authorizer SimpleAclAuthorizer KafkaPrincipal Java
 in the default .Principal Authorizer

http://mail-archives.apache.org/mod_mbox/kafka-dev/201701.mbox/%3CCAJS3ho-80NOBeMytc%2BG6HS7KGo_xmVoJdNexGNsvdjPR5%3D%2Bs%2Bw%40mail.gmail.com%3E
http://markmail.org/message/kmuqq3fqp4ulmc3h#query:+page:1+mid:kmuqq3fqp4ulmc3h+state:results
https://issues.apache.org/jira/browse/KAFKA-4454

1.

2.

Proposed Changes
Change the class to accept a parameter of type instead of .Session Java Principal KafkaPrincipal

case class Session(principal: Principal, clientAddress: InetAddress)

The can access this principal object as follows :Authorizer

public boolean authorize(RequestChannel.Session session, Operation operation, Resource resource) {
...
 Principal principal = session.principal();
 User_Defined_Principal principal = (User_Defined_Principal) principal;
...
}

User_Defined_Principal is the generated by the and it implements Principal PrincipalBuilder Java Principal.

Compatibility, Deprecation, and Migration Plan
What impact (if any) will there be on existing users?

There is no compatibility impact as there is no change in behavior.

Test Plan
- Unit tests to validate that new changes work as expected without affecting the existing behavior.

Rejected Alternatives
Alternative 1 :

Kafka-acls.sh will allow to specify a custom using a new command line parameter "-- principalBuilder" and PrincipalBuilder PrincipalBuil
 configs using a new command line parameter "--principalBuilder-properties". Users can use these to build their custom (that der Principal

implements Java). Add a new API to Interface :Principal PrincipalBuilder

public interface PrincipalBuilder extends Configurable {
...
 /**
 * Build a Principal using name.
 *
 * @param name Principal name
 * @return Principal
 */
 Principal buildPrincipal(String name);

...
}

This API will then be used to generate a using the names specified in --allow-principal and --deny-principal PrincipalBuilder Principal
parameters. This can be included in using the new constructor specified above.Principal KafkaPrincipal
This alternative was rejected due to following reasons :

Since the is built using the "--principalBuilder-properties", users can only specify a particular type of (s) (using --Principal Principal
allow-principal / --deny-principal) at a time.
If users want to specify multiple types of Principals, they will have to run the kafka-acls.sh multiple times with different "--principalBuilder-
properties", even if the Principals might have the same name. For example, we can have a service with name "XYZ" and a Principal
user with name "XYZ".Principal

Due to above reasons, it is quite clear that it is less user friendly and not intuitive.

Alternative 2 :

Changes to kafka-acls.sh

Kafka-acls.sh will allow to specify a custom class using a new command line parameter and PrincipalBuilder "-- principalBuilder" Pr
 configs using a new command line parameter .incipalBuilder "--principalBuilder-properties"

The will take list of properties as follows : "--allow-principal"

bin/kafka-acls.sh --principalBuilder <PrincipalBuilder-class> --principalBuilder-properties
<PrincipalBuilder-properties> --add --allow-principal <principal-properties> --allow-principal
<principal-properties> --operations Read,Write --topic Test-topic

Add a new API to :PrincipalBuilder

public interface PrincipalBuilder extends Configurable {
...

 /**
 * Build a Principal using the provided configs.
 *
 * @param principalConfigs configs used to create the Principal
 * @return Principal
 */
 Principal buildPrincipal(Map<String, ?> principalConfigs);

...
}

The specified class will be responsible for building the using the <principal-properties>.PrincipalBuilder Principal
The generated by this can then be included in using the new constructor specified Principal PrincipalBuilder KafkaPrincipal
above.
The "--principalBuilder" and parameters are optional. If its not specified, the Kafka-acls.sh would still work "--principalBuilder-properties"
as it does today.

This was rejected as per discussions on the email thread as this is a nice to have feature but there is no urgent need for this.

	KIP-111: Kafka should preserve the Principal generated by the PrincipalBuilder while processing the request received on socket channel, on the broker.

