KIP-117: Add a public AdminClient API for Kafka admin
operations

Contents

Contents
Status
Motivation
Proposed Changes
Implementation
New or Changed Public Interfaces
Configuration
Migration Plan and Compatibility
Test Plan
Rejected Alternatives
© Synchronous API
® Future Work

Status

Current state: Accepted
Discussion thread: here
JIRA: KAKFA-3265
Released: 0.11.0

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

Systems that interface with Kafka, such as management systems and proxies, often need to perform administrative actions. For example, they might need
to be able to create or delete topics. Currently, they can't do this without relying on internal Kafka classes, or shell scripts distributed with Kafka. We
would like to add a public, stable Admi nC i ent API that exposes this functionality to JVM-based clients in a well-supported way.

The Admi nd i ent will use the KIP-4 wire protocols to communicate with brokers. Because we avoid direct communication with ZooKeeper, the client
does not need a ZooKeeper dependency. In fact, once this KIP is implemented, we will be able to lock down Zookeeper security further, by enforcing the
invariant that only brokers need to communicate with ZK.

By using the Admi nCl i ent API, clients will avoid being tightly coupled to the implementation details of a particular Kafka version. They will not need to
access internal Kafka classes, or parse the output of scripts. They will also gain the benefits of cross-version client compatibility as implemented in KIP-97.

Proposed Changes

The Admi nd i ent will be distributed as part of kaf ka- cl i ents. j ar. Itwill provide a Java API for managing Kafka.

The Adni nCl i ent interface will be in the or g. apache. kaf ka. cl i ent s. adnmi n namespace. The implementation will be in the Kaf kaAdm nCl i ent cl
ass, in the same namespace. The separation between interface and implementation is intended to make the difference between public API and private
implementation clearer, and make developing mocks in unit tests easier. This is similar to the divide between Pr oducer and Kaf kaPr oducer, and Cons
uner and Kaf kaConsuner .

Users will configure the Adnmi nCl i ent the same way they configure the Pr oducer and Consuner : by supplying a map of keys to values to its
constructor. As much as possible, we should reuse the same configuration key names, such as bootstrap.servers, client.id, etc. We should also offer the
ability to configure timeouts, buffer sizes, and other networking settings.

The Adnmi nCl i ent will provide Conpl et abl eFut ur e-based APIs that closely reflect the requests which the brokers can handle. The client will be multi-
threaded; multiple threads will be able to safely make calls using the same Adm nCl i ent object. When a future fails, its get () method will throw an Exce
ut i onExcept i on which wraps the underlying exception.

We want to handle errors fully and cleanly in Admi nCl i ent . APIs that require communication with multiple brokers should allow for the possbiility that
some brokers will respond and others will not. Any possible return value from the API should be handled. Note that API functions do not throw
exceptions. Instead, the Conpl et abl eFut ur e objects contain the exceptions when necessary.

In general, we want to avoid using internal Kafka classes in the Adni nC i ent interface. For example, most RPC classes should be considered internal,
such as Met adat aRequest or Met adaResponse. We should be able to change those classes in the future without worrying about breaking users of Ad
m nC i ent. Inner classes such as Met adat aResponse#Topi cMet adat a should also be considered internal, and not exposed in the API of Adni nCl i
ent.

https://www.mail-archive.com/dev@kafka.apache.org/msg65697.html
https://issues.apache.org/jira/browse/KAFKA-3265
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-4+-+Command+line+and+centralized+administrative+operations
https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-97%3A+Improved+Kafka+Client+RPC+Compatibility+Policy

Implementation

As mentioned earlier, the Adm nd i ent will use the KIP-4 wire protocol. This mainly means using Net wor kCl i ent and related RPC classes for the
implementation.

This KIP will add only APIs that can be implemented with the existing server-side RPCs. See "New or Changed Public Interfaces" for details. The
intention is that we will continue to extend Adni nd i ent with further KIPs that also add the appropriate server-side functionality is added (such as ACL
management.)

New or Changed Public Interfaces

Clients use the administrative client by creating an instance of class Adm nCl i ent, via the Adm nd i ent #Fact or y#cr eat e function. When the user is
done with the Adm nC i ent , they must call close to release the network sockets and other associated resources of the client.

public interface Admi ndient extends Autod oseable {
static AdminClient create(Map<String, Object> conf);

/**
* Close the AdninClient and rel ease all associated resources.
*/

void close();

| **

* Create a batch of new topics with the default options.
*

* @ar am newTopi cs The new topics to create.
* @eturn The CreateTopi csResults.
*/

Creat eTopi cResul ts creat eTopi cs(Col | ecti on<NewTopi c> newTopi CS) ;

| **

* Create a batch of new topics.
*

* @ar am newTopi cs The new topics to create.

* @aram options The options to use when creating the new topics.
* @eturn The CreateTopi csResults.

*/

Creat eTopi cResul ts createTopi cs(Col | ecti on<NewTopi c> newTopi cs, CreateTopi csOptions options);

| **

* Simlar to #{@ink Adm nC i ent#del eteTopi cs(Col | ection<String>, Del eteTopi csOptions),
* but uses the default options.

* @aram topics The topic names to del ete.
* @eturn The Del et eTopi csResul ts.
*/

Del et eTopi cResul ts del et eTopi cs(Col | ecti on<String> topics);

* Delete a batch of topics.

* It may take several seconds after Admi ndient#del et eTopics returns

* success for all the brokers to becone aware that the topics are gone.
* During this time, Admi ndient#listTopics and Admi nd i ent#describeTopic
* may continue to return information about the del eted topics.

* |f delete.topic.enable is false on the brokers, deleteTopics will mark
* the topics for deletion, but not actually delete them The futures wll
* return successfully in this case.

* @aramtopics The topic names to del ete.

* @aram options The options to use when deleting the topics.
* @eturn The Del et eTopi csResul ts.

*/

Del et eTopi cResul ts del et eTopi cs(Col | ecti on<String> topics, Del eteTopicsOptions options);

| **

* List the topics available in the cluster with the default options.

* @eturn The Li st Topi csResul ts.
*/
Li st Topi csResul ts |istTopics();

| **

* List the topics available in the cluster.

*

* @aram options The options to use when listing the topics.
* @eturn The Li st Topi csResul ts.
*/

Li st Topi csResul ts |i st Topi cs(Li st Topi csOptions options);

/**
* Simlar to {@ink Adm nd i ent#describeTopic(String, DescribeTopi cOptions)},
* but uses the default options.

* @aram t opi cName The topic to describe.
* @eturn The Descri beTopi cResul ts.
*/

Descri beTopi cResul ts descri beTopic(String topicNane);

* Descripe an individual topic in the cluster.

* Note that if auto.create.topics.enable is true on the brokers,

* Adm nC i ent #descri beTopi c(topi cName) nay create a topi c naned topi cNane.
* There are two workarounds: either use Admi nCient#listTopics and ensure
* that the topic is present before describing, or disable

* auto.create.topics.enable.

* @ar am t opi cNanme The topic to describe.

* @aram options The options to use when describing the topic.
* @eturn The Descri beTopi cResul ts.

*/

Descri beTopi cResul ts describeTopic(String topicName, DescribeTopi cOptions options);

/**

* Describe the cluster information, using the default options.
*

* @eturn The Li st NodesResults.

*/

Descri bed usterResul ts describeC uster();

| *x*

* Describe the cluster information.

*

* (@ar am options The options to use when describing the cluster.
* @eturn The Li st NodesResults.
*/

Descri bed usterResul ts describeCd uster(Descri bed usterOptions options);

| *x*

* Get information about the api versions of nodes in the cluster with the default options.

*

* @ar am nodes The nodes to get information about.
* @eturn The Api Ver si onsResul ts.
*

/

Api Ver si onsResul ts api Versi ons(Col | ecti on<Node> nodes);

| *x*

* Get information about the api versions of nodes in the cluster.

* @ar am nodes The nodes to get information about.
* @aram options The options to use when getting api versions of the nodes.
* @eturn The Api VersionsResults.
*/
Api Ver si onsResul ts api Versi ons(Col | ecti on<Node> nodes, Api VersionsOptions options);
}
/**

* The base class for a request to create a new topic.

*/
abstract class NewTopic {
publ i c NewTopic(String nane, int nunPartitions, short replicationFactor);
public NewTopi c(String name, Map<Integer, List<lnteger>> replicasAssignnents);

public String nane();

| *x*

* Set the configuration to use on the new topic.
*

* @aram configs The configuration map.
* @eturn Thi s NewTopi c object.
*/
publ i c NewTopi c set Configs(Map<String, String> configs);
}
/**

* Options for the newTopics call.
*/
cl ass CreateTopi csOptions {
private Integer timeoutMs = null;
private bool ean validateOnly = fal se;
public CreateTopi csOptions setTi meout Ms(int tinmeoutMs);
public CreateTopi csOptions setValidateOnly(bool ean validateOnly);
public bool ean validateOnly();
}

| *x*

* The result of the createTopics call.

*/
class CreateTopi cResults {
/**
* Return a map fromtopic names to futures, which can be used to check the status of individual
* topic creations.
*/
public Map<String, KafkaFuture<Void>> results();
/**
* Return a future which succeeds if all the topic creations succeed.
*/
publ i c Kaf kaFuture<Vvoi d> all ();
}
/*-k

* Options for the del eteTopics call.
*
/
cl ass Del et eTopi csOptions {
private Integer timeoutMs = null;
public Del et eTopi csOptions set Ti meout Ms(i nt timeout Ms);
public int timeoutMs();
}

/**
* The result of the del eteTopics call.
*/
cl ass Del eteTopi cResults {
/**
* Return a map fromtopic nanes to futures which can be used to check the status of
* individual deletions.
*/
public Map<String, KafkaFuture<Void>> results();

/**
* Return a future which succeeds only if all the topic deletions succeed.
*/
publ i c Kaf kaFut ure<Void> all ();
}

cl ass ListTopicsOptions {
private Integer tinmeoutMs = null;
private bool ean listlnternal = true;

public ListTopicsOptions setTimeout Ms(|nteger timeoutMs);
public Integer timeoutMs();

/*-k
* Set whether we should list internal topics.
*
* @aramlistinternal Wether we should Iist internal topics.
* @eturn Thi s ListTopicsOptions object.
*/
public ListTopicsOptions setListlnternal (boolean listlnternal);

public boolean listinternal ();

}

* %
: * The result of the listTopics call.
*
cl a/ss Li st Topi csResults {
* *
: * Return a future which yields a nmap of topic names to TopicListing objects.
*
publli ¢ Kaf kaFut ure<Map<String, TopicListing>> nanesToDescriptions();

/**
* Return a future which yields a collection of TopicListing objects.
*/

publ i ¢ Kaf kaFut ure<Col | ecti on<Topi cLi sting>> descriptions();

/**
* Return a future which yields a collection of topic names.
*/

publ i ¢ Kaf kaFut ure<Col | ecti on<String>> nanes();

}

class TopicListing {
public String nane();
public bool ean internal ();

}

/**
* A detailed description of a single topic in the cluster.
*/
cl ass Topi cDescription {
public String nane();
public bool ean internal ();
public Map<lnteger, TopicPartitionlnfo> partitions();
public String toString();
}

class TopicPartitionlnfo {
public int partition();
public Node |eader();
public List<Node> replicas();
public List<Node> isr();
public String toString();

}

cl ass DescribeTopi csOptions {
public DescribeTopi cOptions setTi neout Ms(int tineoutMs);
public int timeoutMs();

}
/**
* The results of the describeTopic call.
*/
cl ass DescribeTopi cResults {
/**

* Return a future which yields a nap of topic nanmes to Topi cDescription objects.
*/
publ i c Conpl et abl eFut ure<Map<String, Topi cDescription>> nanesToDescriptions();

| **

* Return a future which yields a collection of TopicDescription objects.
*/

publ i c Conpl et abl eFut ur e<Col | ect i on<Topi cDescri pti on>> descriptions();

}

| **

* Options for the |IistNodes call.

*/

cl ass DescribeCd usterOptions {
public DescribeC usterOptions setTi meout Ms(I nteger timeoutMs);
public Integer timeoutMs();

}

| **

* The results of the describeC uster call.

*/

cl ass DescribeCd usterOptionsResults {
publ i c Conpl et abl eFut ur e<Col | ecti on<Node>> nodes();
publ i c Conpl et abl eFut ur e<Node> controller();
public Conpl etabl eFuture<String> clusterld();

}

| *x*

* Options for the api Versions call.

*/

cl ass Api VersionsOptions {
publ i c Api VersionsOptions tineoutMs(Ilnteger tinmeoutMs);
public Integer timeoutMs();

}

| x*

* Results of the apiVersions call.

*/

cl ass Api VersionsResults {
Api Ver si onsResul t s(Map<Node, Kaf kaFut ur e<NodeApi Ver si ons>> futures);
publ i c Map<Node, Kaf kaFut ur e<NodeApi Versi ons>> results();
publ i c Kaf kaFut ur e<Map<Node, NodeApi Versions>> all ();

Configuration

Just like the consumer and the producer, the admin client will have its own Admi nd i ent Conf i g configuration class which extends Abst r act Confi g.

Initially, the supported configuration keys will be:

boot strap. servers
© The boostrap servers as a list of host:port pairs.
client.id
© An ID string to pass to the server when making requests.
net adat a. max. age. ms
© The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to
proactively discover any new brokers or partitions.
send. buffer. bytes
© The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS default will be used
recei ve. buffer. bytes
© The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS default will be used.
reconnect . backof f. ms
© The amount of time to wait before attempting to reconnect to a given host. This avoids repeatedly connecting to a host in a tight loop.
This backoff applies to all requests sent by the consumer to the broker.
try. backoff. ns
© The amount of time to wait before attempting to retry a failed request.
request.timeout. s
© The configuration controls the maximum amount of time the client will wait for the response of a request. If the response is not received
before the timeout elapses the client will resend the request if necessary or fail the request if retries are exhausted.
connections. max.idle.ns

© Close idle connections after the number of milliseconds specified by this config
® security. protocol

© The security protocol used to communicate with brokers

Migration Plan and Compatibility

The Admi ndl i ent will use KIP-97 API version negotiation to communicate with older or newer brokers. In cases where an APl is not available on an
older or newer broker, we will throw an Unsuppor t edVer si onExcept i on.

We should avoid making incompatible changes to the Admi nCl i ent function and class signatures. So for example, if we need to add an additional
argument to an API, we should add a new function rather than changing an existing function signature.

Test Plan

We should have an Adm nd i ent Test integration test which tests creating topics, deleting topics, and listing topics through the API. We can use the Kaf
kaSer ver Test Har ness to test this efficiently with multiple brokers. For methods which support batches, we should test passing a batch of items to be
processed. We should test error conditions as well. We should test the node listing and version getting APIs as well.

Rejected Alternatives

Synchronous API

Instead of having a futures-based API, we could have a synchronous API. In this API, each function would block rather than returning a Future. However,
the Futures-based API can easily be used as a blocking API, simply by calling get() on the Futures which get returned.

Future Work

We would like to add more functionality to the Adni nCl i ent as soon as it becomes available on the brokers. For example, we would like to add a way of
altering topics that already exist. We would also like to add management APIs for ACLs, or the functionality of Get Of f set Shel | .

https://cwiki-test.apache.org/confluence/display/KAFKA/KIP-97%3A+Improved+Kafka+Client+RPC+Compatibility+Policy

	KIP-117: Add a public AdminClient API for Kafka admin operations

