
KIP-48 Delegation token support for Kafka

Motivation
Public Interfaces

APIs and request/response classes
Protocol changes

CreateDelegationTokenRequest
CreateDelegationTokenResponse
Possible Error Codes
RenewDelegationTokenRequest
RenewDelegationTokenResponse
Possible Error Codes
ExpireDelegationTokenRequest
ExpireDelegationTokenResponse
Possible Error Codes
DescribeDelegationTokenRequest
DescribeDelegationTokenResponse
Possible Error Codes
Configuration options

Proposed Changes
Token
Master Secret Key
Token acquisition
Authentication using Delegation Token
Token renewal
Token expiration and cancellation
Token Details in Zookeeper
SCRAM Extensions
JAAS configuration
DelegationToken Client
Command line tool
Changes to Java Clients (producer/consumer)
ACL

Q/A
Future Work

Status

Current state: Accepted

Discussion thread: here

JIRA: KAFKA-1696

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
We introduced support for security in kafka version 0.9.0. using kerberos as authentication layer. Kafka is designed to work with a lot of producers and
consumers so in a secure environment all these clients will need access to a keytab or a TGT to ensure they can communicate with a secure kafka broker.
This has few disadvantages:

Performance/load on KDC as each client has to go to KDC to get the ticket.
Renewal needs to go through KDC and this renewed TGT’s need to be redistributed to all the clients.
Blast Radius is large if the TGT is compromised as TGT may grant access to more than just kafka service
Only compatible with kerberos authentication scheme.
Administration cost as for any new client to work it must have access to keytab or some way to get a TGT from some other node.

Please read http://carfield.com.hk:8080/document/distributed/hadoop-security-design.pdf HDFS section for more detailed explanation of all the
disadvantages above. To address the problems listed above we propose to add support for delegation tokens to secure Kafka. Delegation tokens are
shared secret between kafka brokers and clients so authentication can be done without having to go through KDC.

Delegation tokens will help processing frameworks to distribute the workload to available workers in a secure environment without the added cost of
distributing keytabs or TGT. i.e. In case of Storm, Storm’s master (nimbus) is the only node that needs a keytab. Using this keytab Nimbus will authenticate
with kafka broker and acquire a delegation token. Nimbus can then distribute this delegation token to all of its worker hosts and all workers will be able to
authenticate to kafka using tokens and will have all the access that nimbus keytab principal has.

Public Interfaces

APIs and request/response classes

http://mail-archives.apache.org/mod_mbox/kafka-dev/201602.mbox/%3CD2F60A7C.61F2C%25pbrahmbhatt@hortonworks.com%3E
https://issues.apache.org/jira/browse/KAFKA-1696
http://carfield.com.hk:8080/document/distributed/hadoop-security-design.pdf

getDelegationToken(request: CreateDelegationTokenRequest): CreateDelegationTokenResponse

class CreateDelegationTokenRequest(renewer: Set[KafkaPrincipal] = Set.empty, maxLifeTime: long = -1)

class CreateDelegationTokenResponse(issueTimeMillis: long, expiryTimeMillis: long, maxLifeTime: long, tokenId: String, hmac: byte[])

renewDelegationToken(request: RenewDelegationTokenRequest): RenewDelegationTokenResponse

class RenewDelegationTokenRequest(hmac: byte[], expiryTimeMillis: long)

expireToken(request: ExpireDelegationTokenRequest): ExpireDelegationTokenResponse

class ExpireDelegationTokenRequest(hmac: byte[], expireAt: long = Systemtime.currentTimeMillis)

describeToken(request: DescribeDelegationTokenRequest): DescribeDelegationTokenResponse

class DescribeDelegationTokenRequest()owner: Set[KafkaPrincipal]

Protocol changes

CreateDelegationTokenRequest

CreateDelegationTokenRequest => [Renewer] MaxDateMs
 Renewer => string
 MaxDateMs => INT64

Field Description

Renew
er

Renewer is an Kafka PrincipalType+name string, who is allowed to renew this token before the max lifetime expires. If Renewer list is empty,
then Renewer will default to the owner (Principal which requested this token).

MaxDa
teMs

Max lifetime for the token in milliseconds. If the value is -1, then MaxLifeTime will default to a server side config value (delegation.token.max.
lifetime.ms).

CreateDelegationTokenResponse

CreateDelegationTokenResponse => ErrorCode TokenDetails
 ErrorCode => INT16
 TokenDetails => IssueDateMs ExpiryDateMs MaxDateMs TokenId HMAC
 IssueDateMs => INT64
 ExpiryDateMs => INT64
 MaxDateMs => INT64
 TokenId => String
 HMAC => bytes

Field Description

IssueDateMs timestamp (in msec) when this token was generated. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970
(UTC)).

MaxDateMs timestamp (in msec) at which this token expires. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970 (UTC)).

ExpiryDateMs max life timestamp (in msec) of this token. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970 (UTC)).

TokenId Sequence number to ensure uniqueness

HMAC Keyed-hash message authentication code

Possible Error Codes

* DelegationTokenDisabledException

RenewDelegationTokenRequest

RenewDelegationTokenRequest => HMAC RenewPeriodMs
 HMAC => bytes
 RenewPeriodMs => INT64

Field Description

HMAC HMAC of the delegation token to be renewed

RenewPeriod
Ms

Renew Time period in milliseconds. If the value is -1, then will default to a server side config value (delegation.Renew Time period
token.expiry.time.ms).

RenewDelegationTokenResponse

RenewDelegationTokenResponse => ErrorCode
 ErrorCode => INT32
 ExpiryDateMs => INT64

Field Description

ErrorCode

ExpiryDateMs timestamp (in msec) at which this token expires. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970 (UTC))

Possible Error Codes

* DelegationTokenDisabledException

* TokenRenewerMismatchException

* TokenNotFoundException

ExpireDelegationTokenRequest

ExpireDelegationTokenRequest => HMAC expiryDateMs
 HMAC => bytes
 ExpiryDateMs => INT64

Field Description

HMAC HMAC of the delegation token to be renewed

ExpiryDateMs Expiry time period in milliseconds. If the value is -1, then the token will get invalidated immediately.

ExpireDelegationTokenResponse

ExpireDelegationTokenResponse => ErrorCode
 ErroCode => INT32
 ExpiryDateMs => INT64

Field Description

ErrorCode

ExpiryDat
eMs

timestamp (in msec) at which this token expires. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970 (UTC)). -1
value will invalidate the token immediately

1.
2.

3.

Possible Error Codes

* DelegationTokenDisabledException

* TokenRenewerMismatchException

* TokenNotFoundException

DescribeDelegationTokenRequest

DescribeDelegationTokenRequest => [Owner]
 Owner => String

Field Description

ErrorCode

Owner Kakfa Principal which requested the delegation token. If the Owner list is null (i.e., length is -1), the response contains all the allowed
tokens

from all owners. If Owner list is empty, the response is empty list.

DescribeDelegationTokenResponse

DescribeDelegationTokenResponse => ErrorCode [TokenDetails]
 ErrorCode => INT16
 TokenDetails => Owner IssueDateMs ExpiryDateMs TokenId HMAC [Renewer]
 Owner => String
 IssueDateMs => INT64
 ExpiryDateMs => INT64
 MaxDateMs => INT64
 TokenId => String
 HMAC => bytes
 Renewer => String

Field Description

Owner Kakfa Principal which requested the delegation token

IssueDateMs timestamp (in msec) when this token was generated. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970
(UTC)).

MaxDateMs max life timestamp (in msec) of this token. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970 (UTC)).

ExpiryDateMs timestamp (in msec) at which this token expires. Unit is milliseconds since the beginning of the epoch (midnight Jan 1, 1970 (UTC)).

TokenId Sequence number to ensure uniqueness

HMAC Keyed-hash message authentication code

Renewer Renewers list

Possible Error Codes

* DelegationTokenDisabledException

Configuration options

The following options will be added to and can be configured as properties for Kafka server:KafkaConfig.java

delegation.token.max.lifetime.ms : The token has a maximum lifetime beyond which it cannot be renewed anymore. Default value 7 days.
delegation.token.expiry.time.ms : The token validity time in seconds before the token needs to be renewed. Default value 1 day.

3. delegation.token.master.key : masterKey/secret to generate and verify delegation tokens. This masterKey/secret needs to be configured with all
the brokers. If the masterKey/secret is not set or set to empty string, brokers will Same secret key must be configured across all the brokers.
disable the delegation token support.

Proposed Changes

Token

The Kafka authentication token is modeled after the Hadoop user delegation token. The token will consist of:

TokenDetails:

Owner ID -- Username that this token will authenticate as
Renewers ID -- designated renewers list
Issue date -- timestamp (in msec) when this token was generated
Expiry date -- timestamp (in msec) at which this token expires
Max Date - max life timestamp (in msec) of this token.
TokenID – UUID to ensure uniqueness

TokenAuthenticator(HMAC) := HMAC_SHA1(master key, TokenID)

Authentication Token := (, TokenAuthenticator(HMAC))TokenDetails

Master Secret Key

The MasterKey/secret is used to generate and verify delegation tokens. This is supplied using config option. Same secret key must be configured across
all the brokers. If the secret is not set or set to empty string, brokers will disable the delegation token support. The current proposal does not support
rotation of secret.

Procedure to manually rotate the secret:

We require a re-deployment when the secret needs to be rotated. During this process, already connected clients will continue to work. But any new
connection requests and renew/expire requests can fail.with old tokens

expire all existing tokens
rotate the secret by rolling upgrade, and
generate new tokens

Token acquisition

Following steps describe how tokens can be acquired:

A (Admin/DelegationToken) client connects with one of the kafka broker. Client must be authenticated using any of the available secure channels
so it must have a way to authenticate, i.e. Kerberos keytab or TGT.
Once a client is authenticated, it will make a broker side call to issue a delegation token. The request for delegation token will have to contain an
optional renewer identity and max lifetime for token. The renewer is the user that is allowed to renew this token before the max lifetime expires.
Renewer will default to the owner if not provided and Max life time will default to a server side config value (default days) Brokers will allow a
token to be renewed until maxLifeTime but a token will still expire if not renewed by the expiry time. The expiry time will be a broker side
configuration and will default to min (24 hours, maxlifeTime) . A Delegation Token request can be represented as class DelegationTokenRequest
(renewer: Set[KafkaPrincipal], maxLifeTime: long). The owner is implicit in the request connection as the user who requested the delegation token.
The broker generates a shared secret based on HMAC-SASM(a Password/Secret shared between all brokers, randomly generated tokenId). We
can represent a token as scala case class DelegationToken(owner: KafkaPrincipal, renewer: Set[KafkaPrincipal], maxLifeTime: long, id: String,
hmac: String, expirationTime: long)
Broker stores this token in its in memory cache. Broker also stores the DelegationToken without the hmac in the zookeeper. As all brokers share
the Password/Secret to generate the HMAC-SASM, they can read the request info from zookeeper , generate the hmac and store the delegation
token in local cache.
All brokers will have a cache backed by zookeeper so they will all get notified whenever a new token is generated and they will update their local
cache whenever token state changes.
Broker returns the token to Client. Client is expected to only make delegation token request over an encrypted channel so the token in encrypted
over the wire.
Client is free to distribute this token to other Kafka clients (Producer/Consumers). It is the client’s responsibility to distribute the token securely.

Authentication using Delegation Token

 We will reuse the current SASL channel for delegation token based authentication.

SCRAM is a suitable mechanism for authentication using delegation tokens. KIP-84 proposes to support SASL SCRAM mechanisms. Kafka
clients can authenticate using SCRAM-SHA-256, providing the delegation token HMAC as password.
Server will look up the token from its token cache, if it finds a match and token is not expired it will authenticate the client and the identity will be
established as the owner of the delegation token.
If the token is not matched or token is expired, broker throws appropriate exception back and does not allow the client to continue.

Token renewal

The (Admin/Delegation Token) client authenticates using Kerberos or any other available authentication scheme. A token can not be renewed if
the initial authentication is done through delegation token, client must use a different auth scheme.
Client sends a request to renew a token with an optional renew life time which must be < max life time of token.
Broker looks up the token, if token is expired or if the renewer’s identity does not match with the token’s renewers, or if token renewal is beyond
the Max life time of token, broker disallows the operation by throwing an appropriate exception.

If none of the above conditions are matched, broker updates token’s expiry. Note that the HMAC-SASM is unchanged so the token on client side
is unchanged. Broker updates the expiration in its local cache and on zookeeper so other brokers also get notified and their cache statuses are
updated as well.

Token expiration and cancellation

 If a token is not renewed by the token’s expiration time or if token is beyond the max life time, it will be deleted from all broker caches as well as from
zookeeper. Periodic token expiry check thread will be run as part of Controller Broker. Alternatively, an owner or renewer can issue a expiration
/cancellation by following a similar process as renewal.

Token Details in Zookeeper

Token is stored in Zookeeper as properties in the path /delegation_token/tokens/<tokenUID>. During server startup and token creation, scram credentials
are generated and stored in memory (TokenCache).

Delegation Token Details

//Delegation Token Details for tokenID token123: Zookeeper persistence path /tokenauth/tokens/token123
{
 "version":1,
 "owner" : "owner",
 "renewer" : "renewer",
 "issueTimestamp" : "issueTimestamp",
 "maxTimestamp" : "maxTimestamp",
 "expiryTimestamp" : "expiryTimestamp",
 "tokenID" : "UUID",
};

SCRAM Extensions

SCRAM messages have an optional extensions field which is a comma-separated list of key=value pairs.
After KIP-84 implementation , an extension will be added to the first client SCRAM message to indicate
that authentication is being requested for a delegation token. This will enable Kafka broker to obtain
credentials and principal using a different code path for delegation tokens.

JAAS configuration
Username/password specified in tokenID and token hmac. tokenId is used to retrieve the principal and token hmac on server side.jass config are

JAAS configuration for Clients

KafkaClient {
 org.apache.kafka.common.security.scram.ScramLoginModule required
 username="test123"
 password="ab24267ac3e827e00e57cdf98465baccecbbeced512e90a719026177e04e547e";
 tokenauth=true
};

DelegationToken Client

We will be providing a DelegationToken Client using which users can generate, renew and expire the tokens. This may part of AdminClient
implementation (KIP-4).

DelegationTokenClient

public class DelegationTokenClient {

 public TokenDetails generateToken(List<String> renewers, long maxLifeTime);

 public boolean renewToken(bytes[] hmac, long renewPeriod);

 public boolean expireToken(bytes[] hmac, long expireTimeStamp);

 public boolean invalidateToken(bytes[] hmac);

 public List<TokenDetails> describeTokens();

 public void close();

}

Command line tool

We will provide a commandline script to acquire delegation tokens, renew tokens, invalidate/expire and to describe tokens.

bin/kafka-delegation-token.sh --bootstrap-server broker1:9092 --create --renewer renewer1,renewer2 --max-life-time 1486750745585
bin/kafka-delegation-token.sh --bootstrap-server broker1:9092 --renew --hmac hmacString --renew-time-period 50745585
bin/kafka-delegation-token.sh --bootstrap-server broker1:9092 --expire --hmac hmacString --expiry-time-period 50745585
bin/kafka-delegation-token.sh --bootstrap-server broker1:9092 --describe --owner owner1,owner2

Changes to Java Clients (producer/consumer)

KIP-85 allows dynamic JAAS configuration for Kafka clients. After this we can easily configure the
delegation token for SCRAM-SHA-256 authentication.

Below diagram shows the steps required to use the delegation tokens.

1.

ACL

Currently, we only allow a user to create delegation token for that user only. Renew and expire requests should come from owner or renewers of the token.
So we don't need ACLs for create/renew/expire requests.

Owners and the renewers can always describe their own tokens. To describe others tokens, we can add DESCRIBE operation on Token Resource. In
future, when we extend the support to allow a user to acquire delegation tokens for other users, then we can enable CREATE/DELETE operations.

Operation Resource API

DESCRIBE Token describeTokens

CREATE Token createToken (Will be introduced in a future release)

DELETE Token deleteToken (Will be introduced in a future release)

Q/A
Q1. Is there any dependency on Hadoop APIs/Libraries?

A. No.

Future Work
 Support for master key rotation. Some of the available alternatives are given in below section.

delegation.token.master.key could be a list, which would allow users to support both a new and old key at the same time while clients
are upgrading tokens.
Use the controller to generate and rotate secret and distribute it to all brokers. Brokers will generate hmac based on *current* secret. The
advantage is secret rotation can be more frequent and automated. The disadvantage is added complexity to push/pull tokens from the
controller to brokers and brokers needs to keep a list of valid secrets till max(max life time of all tokens).

1.

2.

Let each broker generate a Random secret on each acquisition request and use this secret to generate the hmac. Broker will store
the hmac and secret in zookeeper. However as zkClient does not support SSL the hmac will be on wire unencrypted which is not safe.

 Support impersonation use cases: Allow users to acquire delegation tokens on behalf of other users

	KIP-48 Delegation token support for Kafka

