
Kafka Streams Architecture

Lifecycle of a StreamThread
Lifecycle of a StreamTask and StandbyTask
Exception Handling

Types of Exceptions:
Coding implications:

Lifecycle of a StreamThread

Lifecycle of a and StreamTask StandbyTask

Warning

We try to keep this doc up to date, however, as it describes internals that might change at any point in time, there is no guarantee that this doc
reflects the latest state of the code base.

Exception Handling
A Kafka Streams client need to handle multiple different types of exceptions. We try to summarize what kind of exceptions are there, and how Kafka
Streams should handle those. In general, Kafka Streams should be resilient to exceptions and keep processing even if some internal exceptions occur.

Types of Exceptions:

There are different categories how exceptions can be categoriezed.

First, we can distinguish between recoverable and fatal exceptions. Recoverable exception should be handled internally and never bubble out to the user.
For fatal exceptions, Kafka Streams is doomed to fail and cannot start/continue to process data.

Related to this are retriable exception. While retriable exception are recoverable in general, it might happen that the (configurable) retry counter is
exceeded; for this case, we end up with an fatal exception.

The second category are "external" vs "internal" exception. By "external" we refer to any exception that could be returned by the brokers. "Internal"
exceptions are those that are raised locally.

For "external" exceptions, we need to consider , , and . For internal exceptions, we have for KafkaConsumer KafkaProducer KafkaAdmintClient
example (de)serialization, state store, and user code exceptions as well as any other exception Kafka Streams raises itself (e.g., configuration exceptions).

Last but not least, we distinguish between exception that should never occur. If those exception do really occur, they indicate a bug and thus all those
exception are fatal. All regular Java exception (eg, NullPointerException) are in this category.

Coding implications:

We should never try to handle any fatal exceptions but clean up and shutdown
We should catch all those exceptions for clean up only and rethrow unmodified (they will eventually bubble out of the thread and trigger
uncaught exception hander if one is registered)
We should only log those exception (with level) once at the thread level before they bubble out of the thread to avoid duplicate ERROR
logging

We need to do fine grained exception handling, ie, catch exceptions individually instead of coarse grained and react accordingly
All methods should have complete JavaDocs about exception they might throw
All exception classes must have strictly defined semantics that are documented in their JavaDocs
In code, we should never throw any regular Java excepiton (except it's fatal) but define our own exceptions if required (this allows us to runtime
destinguish between bugs and our own exceptions)
We should catch, wrap, and rethrow exceptions each time we can add important information to it that helps users and us to figure out the root
cause of what when wrong

To be discussed:

How to handle ?Throwable
Should we try to catch-and-rethrow in order to clean up?

Throwable is fatal, so clean up might fail anyway?
Furthermore, should we assume that the whole JVM is dying anyway?

Should we be harsh and call (note, we are a library – but maybe we are "special" enough to justify this?System.exit
Note, if a thread dies without clean up, but other threads are still running fine, we might end up in a deadlock as locks are not
released
Could also be configurable
Could also be a hybrid: try to clean up on but call if clean up fails (as we would end up in a Throwable System.exit
deadlock anyway – maybe only if running with more than one thread?)

Should we force users to provide uncaught exception handler via constructor to make sure they get notified about dying KafkaStreams
streams?

Restructure exception class hierarchy:
Remove all sub-classed of from public API (we only hand out this one to the user)StreamsException
A inidicates a fatal error (we could sub-class with more detailed fatal errors if required – but StreamsException StreamsException
don't think this is necessary)
We sub-class with (an abstract?) in internal package for any internal StreamsException RecoverableStreamsException
exception that should be handled by Streams and never bubble out

As an alternative (that I would prefer) we could introduce this as an independet and instead of inheriting checked exception
from (this forces us to declare and handle those exceptions in our code and makes it hart do miss – StreamsException
otherwise, one might bubble out due to a bug

We sub-class inidividual recoverable exceptions in a fine grained manner from for individual errorsRecoverableStreamsException
We can further group all retriable exceptions by sub-classing them from abstract RetriableStreamsException extends

 – the more details/categories the better?RecoverableStreamsException

 KafkaConsumer KafkaProducer StreamsKafakClient AdminClient Streams
API

fatal
(should
never occur)

local:

- IllegalArgumentExcetpion

- IllegalStateException

- WakeupException

- InterruptExcetpion

remote:

- UnknownServerException

local:

- IllegalArgumentExcetpion

- IllegalStateException

- WakeupException

- InterruptExcetpion

remote:

- UnknownServerException

- OffsetMetadataTooLarge

- SerializationException (we use <
 as types)byte[],byte[]>

local:

-
IllegalArgumentExcetpion

- IllegalStateException

- WakeupException

- InterruptExcetpion

remote:

- UnknownServerException

- InvalidTopicException

local:

-
IllegalArgumentExcetpion

- IllegalStateException

- WakeupException

- InterruptExcetpion

remote:

- UnknownServerException

- InvalidTopicExcetpion

local:

fatal local:

- ConfigException

remote:

- AuthorizationException (including all
subclasses)

- AuthenticationException (inlcuding all
subclasses)

- SecurityDisabledException

- InvalidTopicException

local:

- ConfigException

remote:

- AuthorizationException
(including all subclasses)

- AuthenticationException
(inlcuding all subclasses)

- SecurityDisabledExcetpion

- InvalidTopicException

- UnkownTopicOrPartitionsExcepti
on (retyable? refresh metadata?)

- RecordBatchTooLargeException

- RecordTooLargeException

local:

- ConfigException

remote:

- AuthorizationException
(including all subclasses)

- AuthenticationException
(inlcuding all subclasses)

- SecurityDisabledExcetpi
on

local:

- ConfigException

remote:

- AuthorizationException
(including all subclasses)

- AuthenticationException
(inlcuding all subclasses)

- SecurityDisabledExcetpi
on

local:

-
ConfigExce
ption

- Serializatio
nException

retriable local:

remote:

- InvalidOffsetException
(OffsetOutOfRangeException,
NoOffsetForPartitionsException)

- CommitFailedException

- TimeoutException

- QuotaViolationException?

local:

remote:

- CorruptedRecordException

-
NotEnoughReplicasAfterAppendE
xception

- OffsetOutOfRangeException (wh
en can producer get this?)

- TimeoutException

- QuotaViolationException?

- BufferExhausedException (verify)

local:

remote:

local:

remote:

local:

recoverable local:

remote:

local:

remote:

- ProducerFencedException

local:

remote:

local:

remote:

local:

-
LockExcepti
on

Having a look at all there are some exception we need to double check if they could bubble out any client (or maybe we should not KafkaException
care, an treat all of them as fatal/remote exceptions).

-> DataException, SchemaBuilderExcetpion, SchemaProjectorException, RequestTargetException, NotAssignedException, IllegalWorkerStateException,
ConnectRestException, BadRequestException, AlreadyExistsException (might be possible to occur, or only TopicExistsException), NotFoundException,
ApiException, InvalidTimestampException, InvalidGroupException, InvalidReplicationFactorException (might be possible, but inidcate bug), o.a.k.common.
erros.InvalidOffsetExcetpion and o.a.k.common.errors.OffsetOutOfRangeException (), side note: do those need cleanup – seems to be duplicates?
ReplicaNotAvailalbeException, UnknowServerException, OperationNotAttempedException, PolicyViolationException, InvalidConfigurationException,
InvalidFetchSizeException, InvalidReplicaAssignmentException, InconsistendGroupProtocolException, ReblanceInProgressException,
LogDirNotFoundException, BrokerNotAvailableException, InvalidOffsetCommitSizeException, InvalidTxnTimeoutException, InvalidPartitionsException,
TopicExistsException (cf. AlreadyExistException), InvalidTxnStateException,, UnsupportedForMessageFormatException,
InvalidSessionTimeoutException, InvalidRequestException, IllegalGenerationException, InvalidRequiredAckException,

-> RetryableException, CoordinatorNotAvailalbeException, RetryableCommitException, DuplicateSequenceNumberException,
NotEnoughReplicasException, NotEnoughReplicasAfterAppendException, InvalidRecordException, DisconnectException, InvalidMetaDataException
(NotLeaderForPartitionException, NoAvailableBrokersException, UnkonwTopicOrPartitionException, KafkaStoreException, LeaderNotAvailalbeException),
GroupCoordinatorNotAvailableException

Should never happen:

Handled by client (consumer, producer, admin) internally and should never bubble out of a client: (verify)

 - ConnectionException, RebalanceNeededException, InvalidPidMappingException, ConcurrentTransactionException, NotLeaderException, Transactional
CoordinatorFencedException, ControllerMovedException, UnkownMemberIdException, OutOfOrderSequenceException, CoordinatorLoadInProgressExce
ption, GroupLoadInProgressException, NotControllerException, NotCoordinatorException, NotCoordinatorForGroupException, StaleMetadataException, N
etworkException,

	Kafka Streams Architecture

