Kafka Streams Architecture

® Lifecycle of a StreamThread
® Lifecycle of a StreamTask and StandbyTask
® Exception Handling

O Types of Exceptions:

© Coding implications:

@ Warning

We try to keep this doc up to date, however, as it describes internals that might change at any point in time, there is no guarantee that this doc
reflects the latest state of the code base.

Lifecycle of a St r eanThr ead

Funtoop()
[)|
processrecords task by task | H
a0l ecords oTask (rocessgorcerbasedon | ot H
Recordgueses tmestamp wihin each task) [~ Be¥beFunctuate() mayoecomnit()
‘whie(rnring) 1 > advance ‘sroam tme” H H H
~Consumex#poii () H :
rebalanco finshed
' om0 pol) 3 fetcn reoras Fruming)
rebaiznce
N ConsuerRebalanceListener '
v L
))
suspens altasks ~close() revoked asks (rieass siste locks)
> Yosy() nivTool
> kogp sato locks create newy assgned tasks -» {nitTope1o9y ()
~fushand commt

= =]

¢ Streanpartitionnssinger I
suboription() assian() (Consumer Group Leacer) onnssign()
assigned asks (using Part it tonorouper)
' Brokers
'
N ool o1 sorersbaance metasatain _consumer otea
<roupld, (subscriptonetadaia assignhelacat)

Lifecycle of a St r eaniTask and St andbyTask

Create sexeammhzesd le - new StreamTask(Producer
whdle (runniag —
et oY - o ' I EoS: Producer niTransactions() - niStaeSiores() ———
| ' nifTopology() mmmmee e
Ucloseq oron emor | '
Shutdown () 0 '
T '
' ' §
' | it taskresume()
-IfEos: estores() resume
' | for eachask—— ' progucer.beginTransaction) ipdateOfisetLimits() - updateOffsetLimits()
' ~intTopology) ———— | el - get state locks
' ConsumerRebalanceListener .onpartitionsAssign() - for each node: node.init) - maybe stats recovery
! ~revoked all nor-assigned suspended tasks
' “Closa task | or ach sk —
' ~resume resssigned tasks ————————————————| tasiccloseSuspended()
' - closeStateManager() taskcloseSuspended()
' EoS: creato now Producer par task Lp| - ir(cean) wrte creckpornt e »| - taskcose()
' eie: share single Producer ovr altasks (reeasestle looks)
H - HEoS: Producer close()
if(naning) ' Y
o ' :
onerror ' '
' ' tasksuspend)
-~ coseTogology() task.suspend()
v L foreach task———] “SRELRO e ciose) P 2 fushAndChackpointSiate()
ConsunexRebalanceListener .onFartitionsRevoke () -commig———— e f
suspond all tasks
- suspend()
taskclose()
taskcciose() “taskcommi)
oreach »| - closestateMaiagE)
 ask coseSuspended) ———— i (cean) wrto checkpoin o
(rmeasestale locks)
Streamthrod.shutdown ()
closeal tasis askconmt) flushAndCheckpointState()
=D | - StateStoraManager usn() fe—prcinrioy il
~RecordCalectorusn() -> Producar ush()
i leos) write checkpoint e
~commiofiais:
i EoS: Producer sendOftsetsToTransaction()
Producer.commit)
[ProducerbeginTransactionf): only I callod from loop] e eckpoinistate)
else Consumer.commit) ooy iy

Exception Handling

A Kafka Streams client need to handle multiple different types of exceptions. We try to summarize what kind of exceptions are there, and how Kafka
Streams should handle those. In general, Kafka Streams should be resilient to exceptions and keep processing even if some internal exceptions occur.

Types of Exceptions:
There are different categories how exceptions can be categoriezed.

First, we can distinguish between recoverable and fatal exceptions. Recoverable exception should be handled internally and never bubble out to the user.
For fatal exceptions, Kafka Streams is doomed to fail and cannot start/continue to process data.

Related to this are retriable exception. While retriable exception are recoverable in general, it might happen that the (configurable) retry counter is
exceeded,; for this case, we end up with an fatal exception.

The second category are "external” vs "internal" exception. By "external” we refer to any exception that could be returned by the brokers. "Internal”
exceptions are those that are raised locally.

For "external" exceptions, we need to consider Kaf kaConsuner , Kaf kaPr oducer, and Kaf kaAdmi nt Cl i ent . For internal exceptions, we have for
example (de)serialization, state store, and user code exceptions as well as any other exception Kafka Streams raises itself (e.g., configuration exceptions).

Last but not least, we distinguish between exception that should never occur. If those exception do really occur, they indicate a bug and thus all those
exception are fatal. All regular Java exception (eg, NullPointerException) are in this category.

Coding implications:

® We should never try to handle any fatal exceptions but clean up and shutdown
© We should catch all those exceptions for clean up only and rethrow unmodified (they will eventually bubble out of the thread and trigger
uncaught exception hander if one is registered)
© We should only log those exception (with ERROR level) once at the thread level before they bubble out of the thread to avoid duplicate
logging
We need to do fine grained exception handling, ie, catch exceptions individually instead of coarse grained and react accordingly
All methods should have complete JavaDocs about exception they might throw
All exception classes must have strictly defined semantics that are documented in their JavaDocs
In runtime code, we should never throw any regular Java excepiton (except it's fatal) but define our own exceptions if required (this allows us to
destinguish between bugs and our own exceptions)
® We should catch, wrap, and rethrow exceptions each time we can add important information to it that helps users and us to figure out the root
cause of what when wrong

To be discussed:

® How to handle Thr owabl e ?
© Should we try to catch-and-rethrow in order to clean up?
" Throwabl e is fatal, so clean up might fail anyway?
= Furthermore, should we assume that the whole JVM is dying anyway?
© Should we be harsh and call Syst em exi t (note, we are a library — but maybe we are "special" enough to justify this?
" Note, if a thread dies without clean up, but other threads are still running fine, we might end up in a deadlock as locks are not
released
® Could also be configurable
" Could also be a hybrid: try to clean up on Thr owabl e but call Syst em exi t if clean up fails (as we would end up in a
deadlock anyway — maybe only if running with more than one thread?)
© Should we force users to provide uncaught exception handler via Kaf kaSt r eans constructor to make sure they get notified about dying
streams?
® Restructure exception class hierarchy:
© Remove all sub-classed of St r eansExcept i on from public API (we only hand out this one to the user)
© A StreansExcepti on inidicates a fatal error (we could sub-class St r eansExcept i on with more detailed fatal errors if required — but
don't think this is necessary)
© We sub-class St r eansExcept i on with (an abstract?) Recover abl eSt r eanmsExcept i on in internal package for any internal
exception that should be handled by Streams and never bubble out
® As an alternative (that | would prefer) we could introduce this as an independet and checked exception instead of inheriting
from St r eansExcept i on (this forces us to declare and handle those exceptions in our code and makes it hart do miss —
otherwise, one might bubble out due to a bug
© We sub-class inidividual recoverable exceptions in a fine grained manner from Recover abl eSt r eansExcept i on for individual errors
© We can further group all retriable exceptions by sub-classing them from abstract Retri abl eSt reanmsExcepti on extends
Recover abl eSt r eansExcept i on — the more details/categories the better?

KafkaConsumer KafkaProducer StreamsKafakClient AdminClient Streams
API

fatal local:

(should

never occur) | - lllegalArgumentExcetpion
- lllegalStateException
- WakeupException

- InterruptExcetpion
remote:

- UnknownServerException

fatal local:
- ConfigException
remote:

- AuthorizationException (including all
subclasses)

- AuthenticationException (inlcuding all
subclasses)

- SecurityDisabledException

- InvalidTopicException

retriable local:

remote:

- InvalidOffsetException
(OffsetOutOfRangeException,
NoOffsetForPartitionsException)
- CommitFailedException

- TimeoutException

- QuotaViolationException?

recoverable | local:

remote:

local:

- lllegalArgumentExcetpion
- lllegalStateException

- WakeupException

- InterruptExcetpion
remote:

- UnknownServerException
- OffsetMetadataTooLarge

- SerializationException (we use <
byte[], byte[] > as types)

local:
- ConfigException
remote:

- AuthorizationException
(including all subclasses)

- AuthenticationException
(inlcuding all subclasses)

- SecurityDisabledExcetpion
- InvalidTopicException

- UnkownTopicOrPartitionsExcepti
on (retyable? refresh metadata?)

- RecordBatchToolLargeException

- RecordTooLargeException
local:

remote:

- CorruptedRecordException
NotEnoughReplicasAfterAppendE
xception

- OffsetOutOfRangeException (wh
en can producer get this?)

- TimeoutException

- QuotaViolationException?

- BufferExhausedException (verify)

local:

remote:

- ProducerFencedException

local:

lllegalArgumentExcetpion

- llegalStateException

- WakeupException

- InterruptExcetpion
remote:

- UnknownServerException

- InvalidTopicException

local:
- ConfigException
remote:

- AuthorizationException
(including all subclasses)

- AuthenticationException
(inlcuding all subclasses)

- SecurityDisabledExcetpi
on

local:

remote:

local:

remote:

local: local:

lllegalArgumentExcetpion

- lllegalStateException

- WakeupException

- InterruptExcetpion

remote:

- UnknownServerException

- InvalidTopicExcetpion

local: local:

- ConfigException -
ConfigExce

remote: ption

- AuthorizationException - Serializatio

(including all subclasses) | nException

- AuthenticationException

(inlcuding all subclasses)

- SecurityDisabledExcetpi

on

local: local:

remote:

local: local:
LockExcepti

remote: on

Having a look at all Kaf kaExcept i on there are some exception we need to double check if they could bubble out any client (or maybe we should not

care, an treat all of them as fatal/remote exceptions).

-> DataException, SchemaBuilderExcetpion, SchemaProjectorException, RequestTargetException, NotAssignedException, lllegalWorkerStateException,
ConnectRestException, BadRequestException, AlreadyExistsException (might be possible to occur, or only TopicExistsException), NotFoundException,
ApiException, InvalidTimestampException, InvalidGroupException, InvalidReplicationFactorException (might be possible, but inidcate bug), o0.a.k.common.
erros.InvalidOffsetExcetpion and o.a.k.common.errors.OffsetOutOfRangeException (side note: do those need cleanup — seems to be duplicates?),
ReplicaNotAvailalbeException, UnknowServerException, OperationNotAttempedException, PolicyViolationException, InvalidConfigurationException,
InvalidFetchSizeException, InvalidReplicaAssignmentException, InconsistendGroupProtocolException, ReblancelnProgressException,
LogDirNotFoundException, BrokerNotAvailableException, InvalidOffsetCommitSizeException, InvalidTxnTimeoutException, InvalidPartitionsException,
TopicExistsException (cf. AlreadyExistException), InvalidTxnStateException,, UnsupportedForMessageFormatException,
InvalidSessionTimeoutException, InvalidRequestException, lllegalGenerationException, InvalidRequiredAckException,

-> RetryableException, CoordinatorNotAvailalbeException, RetryableCommitException, DuplicateSequenceNumberException,
NotEnoughReplicasException, NotEnoughReplicasAfterAppendException, InvalidRecordException, DisconnectException, InvalidMetaDataException
(NotLeaderForPartitionException, NoAvailableBrokersException, UnkonwTopicOrPartitionException, KafkaStoreException, LeaderNotAvailalbeException),
GroupCoordinatorNotAvailableException

Should never happen:

Handled by client (consumer, producer, admin) internally and should never bubble out of a client: (verify)

- ConnectionException, RebalanceNeededException, InvalidPidMappingException, ConcurrentTransactionException, NotLeaderException, Transactional
CoordinatorFencedException, ControllerMovedException, UnkownMemberldException, OutOfOrderSequenceException, CoordinatorLoadlnProgressExce

ption, GroupLoadInProgressException, NotControllerException, NotCoordinatorException, NotCoordinatorForGroupException, StaleMetadataException, N
etworkException,

	Kafka Streams Architecture

