
LanguageManual DDL
Hive Data Definition Language

Overview
Keywords, Non-reserved Keywords and Reserved Keywords
Create/Drop/Alter/Use Database
Create/Drop/Alter Connector
Create/Drop/Truncate Table
Alter Table/Partition/Column
Create/Drop/Alter View
Create/Drop/Alter Materialized View
Create/Drop/Alter Index
Create/Drop Macro
Create/Drop/Reload Function
Create/Drop/Grant/Revoke Roles and Privileges
Show
Describe
Abort

Scheduled queries
Datasketches integration
HCatalog and WebHCat DDL

Overview

HiveQL DDL statements are documented here, including:

CREATE DATABASE/SCHEMA, TABLE, VIEW, FUNCTION, INDEX
DROP DATABASE/SCHEMA, TABLE, VIEW, INDEX
TRUNCATE TABLE
ALTER DATABASE/SCHEMA, TABLE, VIEW
MSCK REPAIR TABLE (or ALTER TABLE RECOVER PARTITIONS)
SHOW DATABASES/SCHEMAS, TABLES, TBLPROPERTIES, VIEWS, PARTITIONS, FUNCTIONS, INDEX[ES], COLUMNS, CREATE TABLE
DESCRIBE DATABASE/SCHEMA, table_name, view_name, materialized_view_name

PARTITION statements are usually options of TABLE statements, except for SHOW PARTITIONS.

Keywords, Non-reserved Keywords and Reserved Keywords

All Keywords

Version Non-reserved Keywords Reserved Keywords

Hive 1.2.0 ADD, ADMIN, AFTER, ANALYZE, ARCHIVE, ASC, BEFORE, BUCKET,
BUCKETS, CASCADE, CHANGE, CLUSTER, CLUSTERED, CLUSTERSTATUS,
COLLECTION, COLUMNS, COMMENT, COMPACT, COMPACTIONS, COMPUTE,
CONCATENATE, CONTINUE, DATA, DATABASES, DATETIME, DAY,
DBPROPERTIES, DEFERRED, DEFINED, DELIMITED, DEPENDENCY,
DESC, DIRECTORIES, DIRECTORY, DISABLE, DISTRIBUTE,
ELEM_TYPE, ENABLE, ESCAPED, EXCLUSIVE, EXPLAIN, EXPORT,
FIELDS, FILE, FILEFORMAT, FIRST, FORMAT, FORMATTED,
FUNCTIONS, HOLD_DDLTIME, HOUR, IDXPROPERTIES, IGNORE, INDEX,
INDEXES, INPATH, INPUTDRIVER, INPUTFORMAT, ITEMS, JAR, KEYS,
KEY_TYPE, LIMIT, LINES, LOAD, LOCATION, LOCK, LOCKS,
LOGICAL, LONG, MAPJOIN, MATERIALIZED, METADATA, MINUS,
MINUTE, MONTH, MSCK, NOSCAN, NO_DROP, OFFLINE, OPTION,
OUTPUTDRIVER, OUTPUTFORMAT, OVERWRITE, OWNER, PARTITIONED,
PARTITIONS, PLUS, PRETTY, PRINCIPALS, PROTECTION, PURGE,
READ, READONLY, REBUILD, RECORDREADER, RECORDWRITER, REGEXP,
RELOAD, RENAME, REPAIR, REPLACE, REPLICATION, RESTRICT,
REWRITE, RLIKE, ROLE, ROLES, SCHEMA, SCHEMAS, SECOND, SEMI,
SERDE, SERDEPROPERTIES, SERVER, SETS, SHARED, SHOW,
SHOW_DATABASE, SKEWED, SORT, SORTED, SSL, STATISTICS,
STORED, STREAMTABLE, STRING, STRUCT, TABLES, TBLPROPERTIES,
TEMPORARY, TERMINATED, TINYINT, TOUCH, TRANSACTIONS,
UNARCHIVE, UNDO, UNIONTYPE, UNLOCK, UNSET, UNSIGNED, URI,
USE, UTC, UTCTIMESTAMP, VALUE_TYPE, VIEW, WHILE, YEAR

ALL, ALTER, AND, ARRAY, AS,
AUTHORIZATION, BETWEEN, BIGINT, BINARY,
BOOLEAN, BOTH, BY, CASE, CAST, CHAR,
COLUMN, CONF, CREATE, CROSS, CUBE,
CURRENT, CURRENT_DATE,
CURRENT_TIMESTAMP, CURSOR, DATABASE,
DATE, DECIMAL, DELETE, DESCRIBE,
DISTINCT, DOUBLE, DROP, ELSE, END,
EXCHANGE, EXISTS, EXTENDED, EXTERNAL,
FALSE, FETCH, FLOAT, FOLLOWING, FOR,
FROM, FULL, FUNCTION, GRANT, GROUP,
GROUPING, HAVING, IF, IMPORT, IN,
INNER, INSERT, INT, INTERSECT,
INTERVAL, INTO, IS, JOIN, LATERAL,
LEFT, LESS, LIKE, LOCAL, MACRO, MAP,
MORE, NONE, NOT, NULL, OF, ON, OR,
ORDER, OUT, OUTER, OVER, PARTIALSCAN,
PARTITION, PERCENT, PRECEDING,
PRESERVE, PROCEDURE, RANGE, READS,
REDUCE, REVOKE, RIGHT, ROLLUP, ROW,
ROWS, SELECT, SET, SMALLINT, TABLE,
TABLESAMPLE, THEN, TIMESTAMP, TO,
TRANSFORM, TRIGGER, TRUE, TRUNCATE,
UNBOUNDED, UNION, UNIQUEJOIN, UPDATE,
USER, USING, UTC_TMESTAMP, VALUES,
VARCHAR, WHEN, WHERE, WINDOW, WITH

Hive 2.0.0 removed: REGEXP, RLIKE

added: AUTOCOMMIT, ISOLATION, LEVEL, OFFSET, SNAPSHOT, TRANSAC
TION, WORK, WRITE

added: COMMIT, ONLY, REGEXP, RLIKE,
ROLLBACK, START

Hive 2.1.0 added: ABORT, KEY, LAST, NORELY, NOVALIDATE, NULLS, RELY,
VALIDATE

added: CACHE, CONSTRAINT, FOREIGN,
PRIMARY, REFERENCES

Hive 2.2.0 added: DETAIL, DOW, EXPRESSION, OPERATOR, QUARTER, SUMMARY,
VECTORIZATION, WEEK, YEARS, MONTHS, WEEKS, DAYS, HOURS,
MINUTES, SECONDS

added: DAYOFWEEK, EXTRACT, FLOOR,
INTEGER, PRECISION, VIEWS

Hive 3.0.0 added: TIMESTAMPTZ, ZONE added: TIME, NUMERIC, SYNC

Reserved keywords are permitted as identifiers if you quote them as described in (Supporting Quoted Identifiers in Column Names version 0.13.0 and
). Most of the keywords are reserved through in order to reduce the ambiguity in grammar (version 1.2.0 and later). later, see HIVE-6013 HIVE-6617 There

are two ways if the user still would like to use those reserved keywords as identifiers: (1) use quoted identifiers, (2) set hive.support.sql11.reserved.
=false. (version 2.1.0 and earlier) keywords

Create/Drop/Alter/Use Database

Create Database

CREATE [REMOTE] (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
 [COMMENT database_comment]
 [LOCATION hdfs_path]
 [MANAGEDLOCATION hdfs_path]
 [WITH DBPROPERTIES (property_name=property_value, ...)];

The uses of SCHEMA and DATABASE are interchangeable – they mean the same thing. CREATE DATABASE was added in Hive 0.6 (). The HIVE-675
WITH DBPROPERTIES clause was added in Hive 0.7 ().HIVE-1836

MANAGEDLOCATION was added to database in Hive 4.0.0 (). LOCATION now refers to the default directory for external tables and HIVE-22995
MANAGEDLOCATION refers to the default directory for managed tables. Its recommended that MANAGEDLOCATION be within metastore.warehouse.dir
so all managed tables have a common root where common governance policies. It can be used with to have it metastore.warehouse.tenant.colocation
point to a directory outside the warehouse root directory to have a tenant based common root where quotas and other policies can be set.

REMOTE databases were added in Hive 4.0.0 () for support for Data connectors. See documentation for . HIVE-24396 Data connectors

Drop Database

DROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT|CASCADE];

The uses of SCHEMA and DATABASE are interchangeable – they mean the same thing. DROP DATABASE was added in Hive 0.6 (). The HIVE-675
default behavior is RESTRICT, where DROP DATABASE will fail if the database is not empty. To drop the tables in the database as well, use DROP
DATABASE ... CASCADE. Support for RESTRICT and CASCADE was added in Hive 0.8 ().HIVE-2090

Alter Database

ALTER (DATABASE|SCHEMA) database_name SET DBPROPERTIES (property_name=property_value, ...); -- (Note: SCHEMA
added in Hive 0.14.0)

ALTER (DATABASE|SCHEMA) database_name SET OWNER [USER|ROLE] user_or_role; -- (Note: Hive 0.13.0 and later;
SCHEMA added in Hive 0.14.0)

ALTER (DATABASE|SCHEMA) database_name SET LOCATION hdfs_path; -- (Note: Hive 2.2.1, 2.4.0 and later)

ALTER (DATABASE|SCHEMA) database_name SET MANAGEDLOCATION hdfs_path; -- (Note: Hive 4.0.0 and later)

The uses of SCHEMA and DATABASE are interchangeable – they mean the same thing. ALTER SCHEMA was added in Hive 0.14 ().HIVE-6601

Version information

REGEXP and RLIKE are non-reserved keywords prior to Hive 2.0.0 and reserved keywords starting in Hive 2.0.0 ().HIVE-11703

https://issues.apache.org/jira/secure/attachment/12618321/QuotedIdentifier.html
https://issues.apache.org/jira/browse/HIVE-6013
https://issues.apache.org/jira/browse/HIVE-6617
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.support.sql11.reserved.keywords
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.support.sql11.reserved.keywords
https://issues.apache.org/jira/browse/HIVE-675
https://issues.apache.org/jira/browse/HIVE-1836
https://issues.apache.org/jira/browse/HIVE-22995
https://issues.apache.org/jira/browse/HIVE-24396
https://cwiki.apache.org/confluence/display/Hive/Data+Connectors+in+Hive
https://issues.apache.org/jira/browse/HIVE-675
https://issues.apache.org/jira/browse/HIVE-2090
https://issues.apache.org/jira/browse/HIVE-6601
https://issues.apache.org/jira/browse/HIVE-11703

The ALTER DATABASE ... SET LOCATION statement does not move the contents of the database's current directory to the newly specified location. It
does not change the locations associated with any tables/partitions under the specified database. It only changes the default parent-directory where new
tables will be added for this database. This behaviour is analogous to how changing a table-directory does not move existing partitions to a different
location.

The ALTER DATABASE ... SET MANAGEDLOCATION statement does not move the contents of the database's managed tables directories to the newly
specified location. It does not change the locations associated with any tables/partitions under the specified database. It only changes the default parent-
directory where new tables will be added for this database. This behaviour is analogous to how changing a table-directory does not move existing
partitions to a different location.

No other metadata about a database can be changed.

Use Database

USE database_name;
USE DEFAULT;

USE sets the current database for all subsequent HiveQL statements. To revert to the default database, use the keyword " " instead of a database default
name. To check which database is currently being used: (as of).SELECT current_database() Hive 0.13.0

USE database_name was added in Hive 0.6 ().HIVE-675

Create/Drop/Alter Connector

Create Connector

CREATE CONNECTOR [IF NOT EXISTS] connector_name
 [TYPE datasource_type]
 [URL datasource_url]
 [COMMENT connector_comment]
 [WITH DCPROPERTIES (property_name=property_value, ...)];

Since Hive 4.0.0 via Support for Data connectors was added in hive 4.0.0. Initial commit includes connector implementations for JDBC based HIVE-24396
datasource like MYSQL, POSTGRES, DERBY. Additional connector implementations will be added via followup commits.

TYPE - Type of the remote datasource this connector connects to. for example MYSQL. The type determines the Driver class and any other params
specific to this datasource.

URL - URL of the remote datasource. In case of JDBC datasource, it would be the JDBC connection URL. For hive types, it would be the thrift URL.

COMMENT - A short description for this connector.

DCPROPERTIES: Contains a set of name/value pairs that are set for the connector. The credentials for the remote datasource are specified as part of the
DCPROPERTIES as documented in the docs. All properties that start with a prefix of "hive.sql" are added to the tables mapped by JDBC Storage Handler
this connector.

Drop Connector

DROP CONNECTOR [IF EXISTS] connector_name;

Since Hive 4.0.0 via . If there are databases that are mapped by this connector, drop still succeeds. Users will see errors when running DDLs HIVE-24396
like "show tables" in the mapped databases.

Alter Connector

ALTER CONNECTOR connector_name SET DCPROPERTIES (property_name=property_value, ...);

ALTER CONNECTOR connector_name SET URL new_url;

ALTER CONNECTOR connector_name SET OWNER [USER|ROLE] user_or_role;

Since Hive 4.0.0 via HIVE-24396

The ALTER CONNECTOR ... SET DCPROPERTIES replaces the existing properties with the new set of properties specified in the ALTER DDL.

https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-Misc.Functions
https://issues.apache.org/jira/browse/HIVE-4144
https://issues.apache.org/jira/browse/HIVE-675
https://issues.apache.org/jira/browse/HIVE-24396
https://cwiki.apache.org/confluence/display/Hive/JDBC+Storage+Handler
https://issues.apache.org/jira/browse/HIVE-24396
https://issues.apache.org/jira/browse/HIVE-24396

The ALTER CONNECTOR ... SET URL replaces the existing URL with a new URL for the remote datasource. Any REMOTE databases that were created
using the connector will continue to work as they are associated by name.

The ALTER CONNECTOR ... SET OWNER changes the ownership of the connector object in hive.

Create/Drop/Truncate Table

Create Table
Managed and External Tables
Storage Formats
Row Formats & SerDe
Partitioned Tables
External Tables
Create Table As Select (CTAS)
Create Table Like
Bucketed Sorted Tables
Skewed Tables
Temporary Tables
Transactional Tables
Constraints

Drop Table
Truncate Table

Create Table

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name -- (Note: TEMPORARY available in
Hive 0.14.0 and later)
 [(col_name data_type [column_constraint_specification] [COMMENT col_comment], ... [constraint_specification])]
 [COMMENT table_comment]
 [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
 [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
 [SKEWED BY (col_name, col_name, ...) -- (Note: Available in Hive 0.10.0 and later)]
 ON ((col_value, col_value, ...), (col_value, col_value, ...), ...)
 [STORED AS DIRECTORIES]
 [
 [ROW FORMAT row_format]
 [STORED AS file_format]
 | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)] -- (Note: Available in Hive 0.6.0
and later)
]
 [LOCATION hdfs_path]
 [TBLPROPERTIES (property_name=property_value, ...)] -- (Note: Available in Hive 0.6.0 and later)
 [AS select_statement]; -- (Note: Available in Hive 0.5.0 and later; not supported for external tables)

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
 LIKE existing_table_or_view_name
 [LOCATION hdfs_path];

data_type
 : primitive_type
 | array_type
 | map_type
 | struct_type
 | union_type -- (Note: Available in Hive 0.7.0 and later)

primitive_type
 : TINYINT
 | SMALLINT
 | INT
 | BIGINT
 | BOOLEAN
 | FLOAT
 | DOUBLE
 | DOUBLE PRECISION -- (Note: Available in Hive 2.2.0 and later)
 | STRING
 | BINARY -- (Note: Available in Hive 0.8.0 and later)
 | TIMESTAMP -- (Note: Available in Hive 0.8.0 and later)
 | DECIMAL -- (Note: Available in Hive 0.11.0 and later)
 | DECIMAL(precision, scale) -- (Note: Available in Hive 0.13.0 and later)
 | DATE -- (Note: Available in Hive 0.12.0 and later)

 | VARCHAR -- (Note: Available in Hive 0.12.0 and later)
 | CHAR -- (Note: Available in Hive 0.13.0 and later)

array_type
 : ARRAY < data_type >

map_type
 : MAP < primitive_type, data_type >

struct_type
 : STRUCT < col_name : data_type [COMMENT col_comment], ...>

union_type
 : UNIONTYPE < data_type, data_type, ... > -- (Note: Available in Hive 0.7.0 and later)

row_format
 : DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
 [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
 [NULL DEFINED AS char] -- (Note: Available in Hive 0.13 and later)
 | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

file_format:
 : SEQUENCEFILE
 | TEXTFILE -- (Default, depending on hive.default.fileformat configuration)
 | RCFILE -- (Note: Available in Hive 0.6.0 and later)
 | ORC -- (Note: Available in Hive 0.11.0 and later)
 | PARQUET -- (Note: Available in Hive 0.13.0 and later)
 | AVRO -- (Note: Available in Hive 0.14.0 and later)
 | JSONFILE -- (Note: Available in Hive 4.0.0 and later)
 | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname

column_constraint_specification:
 : [PRIMARY KEY|UNIQUE|NOT NULL|DEFAULT [default_value]|CHECK [check_expression] ENABLE|DISABLE NOVALIDATE
RELY/NORELY]

default_value:
 : [LITERAL|CURRENT_USER()|CURRENT_DATE()|CURRENT_TIMESTAMP()|NULL]

constraint_specification:
 : [, PRIMARY KEY (col_name, ...) DISABLE NOVALIDATE RELY/NORELY]
 [, PRIMARY KEY (col_name, ...) DISABLE NOVALIDATE RELY/NORELY]
 [, CONSTRAINT constraint_name FOREIGN KEY (col_name, ...) REFERENCES table_name(col_name, ...) DISABLE
NOVALIDATE
 [, CONSTRAINT constraint_name UNIQUE (col_name, ...) DISABLE NOVALIDATE RELY/NORELY]
 [, CONSTRAINT constraint_name CHECK [check_expression] ENABLE|DISABLE NOVALIDATE RELY/NORELY]

CREATE TABLE creates a table with the given name. An error is thrown if a table or view with the same name already exists. You can use IF NOT
EXISTS to skip the error.

Table names and column names are case insensitive but SerDe and property names are case sensitive.
In Hive 0.12 and earlier, only alphanumeric and underscore characters are allowed in table and column names.
In Hive 0.13 and later, column names can contain any character (see), however, dot () and colon () yield errors on Unicode HIVE-6013 . :
querying, so they are disallowed in Hive 1.2.0 (see). Any column name that is specified within backticks () is treated HIVE-10120 `
literally. Within a backtick string, use double backticks () to represent a backtick character. Backtick quotation also enables the use of ``
reserved keywords for table and column identifiers.
To revert to pre-0.13.0 behavior and restrict column names to alphanumeric and underscore characters, set the configuration property hi

 to . In this configuration, backticked names are interpreted as regular expressions. For ve.support.quoted.identifiers none
details, see .Supporting Quoted Identifiers in Column Names

Table and column comments are string literals (single-quoted).
A table created without the is called a because Hive manages its data. To find out if a table is managed or EXTERNAL clause managed table
external, look for tableType in the output of .DESCRIBE EXTENDED table_name
The TBLPROPERTIES clause allows you to tag the table definition with your own metadata key/value pairs. Some predefined table properties
also exist, such as last_modified_user and last_modified_time which are automatically added and managed by Hive. Other predefined table
properties include:

TBLPROPERTIES ("comment"=" ")table_comment
TBLPROPERTIES ("hbase.table.name"=" ") – see .table_name HBase Integration
TBLPROPERTIES ("immutable"="true") or ("immutable"="false") in release 0.13.0+ () – see HIVE-6406 Inserting Data into Hive Tables

.from Queries
TBLPROPERTIES ("orc.compress"="ZLIB") or ("orc.compress"="SNAPPY") or ("orc.compress"="NONE") and other ORC properties –
see .ORC Files
TBLPROPERTIES ("transactional"="true") or ("transactional"="false") in release 0.14.0+, the default is "false" – see .Hive Transactions
TBLPROPERTIES ("NO_AUTO_COMPACTION"="true") or ("NO_AUTO_COMPACTION"="false"), the default is "false" – see Hive

.Transactions

http://en.wikipedia.org/wiki/List_of_Unicode_characters
https://issues.apache.org/jira/browse/HIVE-6013
https://issues.apache.org/jira/browse/HIVE-10120
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.support.quoted.identifiers
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.support.quoted.identifiers
https://issues.apache.org/jira/secure/attachment/12618321/QuotedIdentifier.html
https://cwiki-test.apache.org/confluence/display/Hive/HBaseIntegration#HBaseIntegration-Usage
https://issues.apache.org/jira/browse/HIVE-6406
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-InsertingdataintoHiveTablesfromqueries
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-InsertingdataintoHiveTablesfromqueries
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-HiveQLSyntax
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties

TBLPROPERTIES ("compactor.mapreduce.map.memory.mb"=") – seemapper_memory" Hive Transactions.
TBLPROPERTIES ("compactorthreshold.hive.compactor.delta.num.threshold"=" ") – threshold_num see Hive Transactions.
TBLPROPERTIES ("compactorthreshold.hive.compactor.delta.pct.threshold"=" ") – threshold_pct see Hive Transactions.
TBLPROPERTIES () in release 1.2.0+ () "auto.purge"="true") or ("auto.purge"="false" HIVE-9118 – see , , Drop Table Drop Partitions Trunc

, and .ate Table Insert Overwrite
TBLPROPERTIES ("EXTERNAL"="TRUE") in release 0.6.0+ () Change a managed table to an external table and vice HIVE-1329 –
versa for "FALSE".

As of Hive 2.4.0 () the value of the property 'EXTERNAL' is parsed as a boolean (case insensitive true or false) HIVE-16324
instead of a case sensitive string comparison.

TBLPROPERTIES ("external.table.purge"="true") in release 4.0.0+ () when set on external table would delete the data as HIVE-19981
well.

To specify a database for the table, either issue the statement prior to the CREATE TABLE statement (in and later) USE database_name Hive 0.6
or qualify the table name with a database name (" " in and later). database_name.table.name Hive 0.7
The keyword " " can be used for the default database.default

See below for more information about table comments, table properties, and SerDe properties.Alter Table

See and for details about the primitive and complex data types.Type System Hive Data Types

Managed and External Tables

By default Hive creates managed tables, where files, metadata and statistics are managed by internal Hive processes. For details on the differences
between managed and external table see .Managed vs. External Tables

Storage Formats

Hive supports built-in and custom-developed file formats. See CompressedStorage for details on compressed table storage.
The following are some of the formats built-in to Hive:

Storage Format Description

STORED AS TEXTFILE Stored as plain text files. TEXTFILE is the default file format, unless the configuration parameter hive.default.
fileformat has a different setting.

Use the DELIMITED clause to read delimited files.

Enable escaping for the delimiter characters by using the 'ESCAPED BY' clause (such as ESCAPED BY '\')
Escaping is needed if you want to work with data that can contain these delimiter characters.

A custom NULL format can also be specified using the 'NULL DEFINED AS' clause (default is '\N').

(Hive 4.0) All BINARY columns in the table are assumed to be base64 encoded. To read the data as raw bytes:

TBLPROPERTIES ("hive.serialization.decode.binary.as.base64"="false")

STORED AS SEQUENCEFILE Stored as compressed Sequence File.

STORED AS ORC Stored as ORC file format. Supports ACID Transactions & Cost-based Optimizer (CBO). Stores column-level
metadata.

STORED AS PARQUET Stored as Parquet format for the Parquet columnar storage format in Hive 0.13.0 and later;
Use ROW FORMAT SERDE ... STORED AS INPUTFORMAT ... OUTPUTFORMAT syntax ... in Hive 0.10, 0.11, or
0.12.

STORED AS AVRO Stored as Avro format in Hive 0.14.0 and later (see Avro SerDe).

STORED AS RCFILE Stored as format.Record Columnar File

STORED AS JSONFILE Stored as Json file format in Hive 4.0.0 and later.

STORED BY Stored by a non-native table format. To create or link to a non-native table, for example a table backed by HBase or
 or Druid Accumulo.

See StorageHandlers for more information on this option.

INPUTFORMAT and
OUTPUTFORMAT

in the file_format to specify the name of a corresponding InputFormat and OutputFormat class as a string literal.

For example, 'org.apache.hadoop.hive.contrib.fileformat.base64.Base64TextInputFormat'.

For LZO compression, the values to use are
'INPUTFORMAT "com.hadoop.mapred.DeprecatedLzoTextInputFormat"
OUTPUTFORMAT " .HiveIgnoreKeyTextOutputFormat"' org.apache.hadoop.hive.ql.io

(see).LZO Compression

https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://issues.apache.org/jira/browse/HIVE-9118
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-InsertOverwrite
https://issues.apache.org/jira/browse/HIVE-1329
https://issues.apache.org/jira/browse/HIVE-16324
https://issues.apache.org/jira/browse/HIVE-19981
https://issues.apache.org/jira/browse/HIVE-675
https://issues.apache.org/jira/browse/HIVE-1517
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-AlterTable
https://cwiki-test.apache.org/confluence/display/Hive/Tutorial#Tutorial-TypeSystem
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki-test.apache.org/confluence/display/Hive/Managed+vs.+External+Tables
https://cwiki-test.apache.org/confluence/display/Hive/CompressedStorage
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.default.fileformat
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.default.fileformat
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-HiveQLSyntax
https://cwiki-test.apache.org/confluence/display/Hive/Parquet
https://cwiki-test.apache.org/confluence/display/Hive/Parquet#Parquet-Hive0.13andlater
https://cwiki-test.apache.org/confluence/display/Hive/Parquet#Parquet-Hive0.10-0.12
https://cwiki-test.apache.org/confluence/display/Hive/Parquet#Parquet-Hive0.10-0.12
https://issues.apache.org/jira/browse/HIVE-6806
https://cwiki-test.apache.org/confluence/display/Hive/AvroSerDe
https://en.wikipedia.org/wiki/RCFile
https://cwiki-test.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki-test.apache.org/confluence/display/Hive/Druid+Integration
https://cwiki-test.apache.org/confluence/display/Hive/AccumuloIntegration
https://cwiki-test.apache.org/confluence/display/Hive/StorageHandlers
http://org.apache.hadoop.hive.ql.io/
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+LZO

Row Formats & SerDe

You can create tables with a custom SerDe or using a native SerDe. A native SerDe is used if ROW FORMAT is not specified or ROW FORMAT
DELIMITED is specified.
Use the SERDE clause to create a table with a custom SerDe. For more information on SerDes see:

Hive SerDe
SerDe
HCatalog Storage Formats

You must specify a list of columns for tables that use a native SerDe. Refer to the part of the User Guide for the allowable column types. Types
A list of columns for tables that use a custom SerDe may be specified but Hive will query the SerDe to determine the actual list of columns for this table.

For general information about SerDes, see Hive SerDe in the Developer Guide. Also see SerDe for details about input and output processing.

To change a table's SerDe or SERDEPROPERTIES, use the ALTER TABLE statement as described below in Add SerDe Properties.

Row Format Description

RegEx

ROW FORMAT SERDE
'org.apache.hadoop.hive.
serde2.RegexSerDe'
WITH SERDEPROPERTIES
(
"input.regex" = "<regex>"
)
STORED AS TEXTFILE;

Stored as plain text file, translated by Regular Expression.

The following example defines a table in the default Apache Weblog format.

CREATE TABLE apachelog (
 host STRING,
 identity STRING,
 user STRING,
 time STRING,
 request STRING,
 status STRING,
 size STRING,
 referer STRING,
 agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
 "input.regex" = "([^]*) ([^]*) ([^]*) (-|\\[^\\]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*)
(-|[0-9]*)(?: ([^ \"]*|\".*\") ([^ \"]*|\".*\"))?"
)
STORED AS TEXTFILE;
More about RegexSerDe can be found here in and .HIVE-662 HIVE-1719

JSON

ROW FORMAT SERDE
'org.apache.hive.hcatalog.
data.JsonSerDe'
STORED AS TEXTFILE

Stored as plain text file in JSON format.

The JsonSerDe for JSON files is available in and later.Hive 0.12

In some distributions, a reference to hive-hcatalog-core.jar is required.
ADD JAR /usr/lib/hive-hcatalog/lib/hive-hcatalog-core.jar;

CREATE TABLE my_table(a string, b bigint, ...)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
STORED AS TEXTFILE;

The was moved to Hive from HCatalog and before it was in hive-contrib project. It was added to the Hive JsonSerDe
distribution by .HIVE-4895
An Amazon SerDe is available at for s3://elasticmapreduce/samples/hive-ads/libs/jsonserde.jar
releases prior to 0.12.0.

The JsonSerDe for JSON files is available in and later.Hive 0.12
Starting in Hive 3.0.0, JsonSerDe is added to Hive Serde as "org.apache.hadoop.hive.serde2.JsonSerDe" (HIVE-19211
).
CREATE TABLE my_table(a string, b bigint, ...)
ROW FORMAT SERDE ' 'org.apache.hadoop.hive.serde2.JsonSerDe

 STORED AS TEXTFILE;

Or is supported starting in Hive 4.0.0 (), so you can create table as follows:STORED AS JSONFILE HIVE-19899

CREATE TABLE my_table(a string, b bigint, ...) STORED AS JSONFILE;

CSV/TSV

ROW FORMAT SERDE
'org.apache.hadoop.hive.
serde2.OpenCSVSerde'
STORED AS TEXTFILE

Stored as plain text file in CSV / TSV format.

The CSVSerde is available in and greater.Hive 0.14
The following example creates a TSV (Tab-separated) file.

https://cwiki-test.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe
https://cwiki-test.apache.org/confluence/display/Hive/SerDe
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+StorageFormats
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe
https://cwiki.apache.org/confluence/display/Hive/SerDe
https://issues.apache.org/jira/browse/HIVE-662
https://issues.apache.org/jira/browse/HIVE-1719
https://issues.apache.org/jira/browse/HIVE-4895
https://issues.apache.org/jira/browse/HIVE-4895
https://issues.apache.org/jira/browse/HIVE-4895
https://issues.apache.org/jira/browse/HIVE-19211
https://issues.apache.org/jira/browse/HIVE-19899
https://issues.apache.org/jira/browse/HIVE-7777

CREATE TABLE my_table(a string, b string, ...)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
WITH SERDEPROPERTIES (
 "separatorChar" = "\t",
 "quoteChar" = "'",
 "escapeChar" = "\\"
)
STORED AS TEXTFILE;
Default properties for SerDe is Comma-Separated (CSV) file

DEFAULT_ESCAPE_CHARACTER \
DEFAULT_QUOTE_CHARACTER "
DEFAULT_SEPARATOR ,
This SerDe works for most CSV data, but does not handle embedded newlines. To use the SerDe, specify the fully
qualified class name org.apache.hadoop.hive.serde2.OpenCSVSerde.

Documentation is based on original documentation at .https://github.com/ogrodnek/csv-serde

Limitations
This SerDe treats all columns to be of type String. Even if you create a table with non-string column types using this
SerDe, the DESCRIBE TABLE output would show string column type.
The type information is retrieved from the SerDe.

To convert columns to the desired type in a table, you can create a view over the table that does the CAST to the
desired type.

The CSV SerDe is based on , and was added to the Hive distribution in https://github.com/ogrodnek/csv-serde HIVE-
.7777

The CSVSerde has been built and tested against Hive 0.14 and later, and uses 2.3 which is bundled with Open-CSV
the Hive distribution.

For general information about SerDes, see Hive SerDe in the Developer Guide. Also see SerDe for details about input
and output processing.

Partitioned Tables

Partitioned tables can be created using the PARTITIONED BY clause. A table can have one or more partition columns and a separate data directory is
created for each distinct value combination in the partition columns. Further, tables or partitions can be bucketed using CLUSTERED BY columns, and
data can be sorted within that bucket via SORT BY columns. This can improve performance on certain kinds of queries.

If, when creating a partitioned table, you get this error: "FAILED: Error in semantic analysis: Column repeated in partitioning columns," it means you are
trying to include the partitioned column in the data of the table itself. You probably really do have the column defined. However, the partition you create
makes a pseudocolumn on which you can query, so you must rename your table column to something else (that users should not query on!).

For example, suppose your original unpartitioned table had three columns: id, date, and name.

Example:

id int,
date date,
name varchar

Now you want to partition on date. Your Hive definition could use "dtDontQuery" as a column name so that "date" can be used for partitioning (and
querying).

Example:

create table table_name (
 id int,
 dtDontQuery string,
 name string
)
partitioned by (date string)

Now your users will still query on " " but the second column dtDontQuery will hold the original values.where date = '...'

Here's an example statement to create a partitioned table:

Example:

https://github.com/ogrodnek/csv-serde
https://github.com/ogrodnek/csv-serde
https://issues.apache.org/jira/browse/HIVE-7777
https://issues.apache.org/jira/browse/HIVE-7777
http://opencsv.sourceforge.net/
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe
https://cwiki.apache.org/confluence/display/Hive/SerDe

CREATE TABLE page_view(viewTime INT, userid BIGINT,
 page_url STRING, referrer_url STRING,
 ip STRING COMMENT 'IP Address of the User')
 COMMENT 'This is the page view table'
 PARTITIONED BY(dt STRING, country STRING)
 STORED AS SEQUENCEFILE;

The statement above creates the page_view table with viewTime, userid, page_url, referrer_url, and ip columns (including comments). The table is also
partitioned and data is stored in sequence files. The data format in the files is assumed to be field-delimited by ctrl-A and row-delimited by newline.

Example:

CREATE TABLE page_view(viewTime INT, userid BIGINT,
 page_url STRING, referrer_url STRING,
 ip STRING COMMENT 'IP Address of the User')
 COMMENT 'This is the page view table'
 PARTITIONED BY(dt STRING, country STRING)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\001'
STORED AS SEQUENCEFILE;

The above statement lets you create the same table as the previous table.

In the previous examples the data is stored in <hive.metastore.warehouse.dir>/page_view. Specify a value for the key hive.metastore.warehouse.
 in the Hive config file hive-site.xml.dir

External Tables

The EXTERNAL keyword lets you create a table and provide a LOCATION so that Hive does not use a default location for this table. This comes in handy
if you already have data generated. When dropping an EXTERNAL table, data in the table is deleted from the file system. Starting Hive 4.0.0 (NOT

) setting table property external.table.purge=true, will also delete the data.

An EXTERNAL table points to any HDFS location for its storage, rather than being stored in a folder specified by the configuration property hive.
.metastore.warehouse.dir

Example:

CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT,
 page_url STRING, referrer_url STRING,
 ip STRING COMMENT 'IP Address of the User',
 country STRING COMMENT 'country of origination')
 COMMENT 'This is the staging page view table'
 ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054'
 STORED AS TEXTFILE
 LOCATION '<hdfs_location>';

You can use the above statement to create a page_view table which points to any HDFS location for its storage. But you still have to make sure that the
data is delimited as specified in the CREATE statement above.

For another example of creating an external table, see in the Tutorial.Loading Data

Create Table As Select (CTAS)

Tables can also be created and populated by the results of a query in one create-table-as-select (CTAS) statement. The table created by CTAS is atomic,
meaning that the table is not seen by other users until all the query results are populated. So other users will either see the table with the complete results
of the query or will not see the table at all.

There are two parts in CTAS, the SELECT part can be any supported by HiveQL. The CREATE part of the CTAS takes the resulting SELECT statement
schema from the SELECT part and creates the target table with other table properties such as the SerDe and storage format.

Starting with Hive 3.2.0, CTAS statements can define a partitioning specification for the target table ().HIVE-20241

 Unable to render Jira issues macro, execution

error.

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.metastore.warehouse.dir
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.metastore.warehouse.dir
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.metastore.warehouse.dir
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.metastore.warehouse.dir
https://cwiki-test.apache.org/confluence/display/Hive/Tutorial#Tutorial-LoadingData
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Select
https://issues.apache.org/jira/browse/HIVE-20241

CTAS has these restrictions:

The target table cannot be an external table.
The target table cannot be a list bucketing table.

Example:

CREATE TABLE new_key_value_store
 ROW FORMAT SERDE "org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe"
 STORED AS RCFile
 AS
SELECT (key % 1024) new_key, concat(key, value) key_value_pair
FROM key_value_store
SORT BY new_key, key_value_pair;

The above CTAS statement creates the target table new_key_value_store with the schema (new_key DOUBLE, key_value_pair STRING) derived from the
results of the SELECT statement. If the SELECT statement does not specify column aliases, the column names will be automatically assigned to _col0,
_col1, and _col2 etc. In addition, the new target table is created using a specific SerDe and a storage format independent of the source tables in the
SELECT statement.

Starting with , the SELECT statement can include one or more common table expressions (CTEs), as shown in the . For an Hive 0.13.0 SELECT syntax
example, see .Common Table Expression

Being able to select data from one table to another is one of the most powerful features of Hive. Hive handles the conversion of the data from the source
format to the destination format as the query is being executed.

Create Table Like

The LIKE form of CREATE TABLE allows you to copy an existing table definition exactly (without copying its data). In contrast to CTAS, the statement
below creates a new empty_key_value_store table whose definition exactly matches the existing key_value_store in all particulars other than table name.
The new table contains no rows.

CREATE TABLE empty_key_value_store
LIKE key_value_store [TBLPROPERTIES (property_name=property_value, ...)];

Before Hive 0.8.0, CREATE TABLE LIKE view_name would make a copy of the view. In Hive 0.8.0 and later releases, CREATE TABLE LIKE view_name
creates a table by adopting the schema of view_name (fields and partition columns) using defaults for SerDe and file formats.

Bucketed Sorted Tables

Example:

CREATE TABLE page_view(viewTime INT, userid BIGINT,
 page_url STRING, referrer_url STRING,
 ip STRING COMMENT 'IP Address of the User')
 COMMENT 'This is the page view table'
 PARTITIONED BY(dt STRING, country STRING)
 CLUSTERED BY(userid) SORTED BY(viewTime) INTO 32 BUCKETS
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\001'
 COLLECTION ITEMS TERMINATED BY '\002'
 MAP KEYS TERMINATED BY '\003'
 STORED AS SEQUENCEFILE;

In the example above, the page_view table is bucketed (clustered by) userid and within each bucket the data is sorted in increasing order of viewTime.
Such an organization allows the user to do efficient sampling on the clustered column - in this case userid. The sorting property allows internal operators to
take advantage of the better-known data structure while evaluating queries, also increasing efficiency. MAP KEYS and COLLECTION ITEMS keywords
can be used if any of the columns are lists or maps.

The CLUSTERED BY and SORTED BY creation commands do not affect how data is inserted into a table – only how it is read. This means that users
must be careful to insert data correctly by specifying the number of reducers to be equal to the number of buckets, and using CLUSTER BY and SORT BY
commands in their query.

There is also an example of .creating and populating bucketed tables

Skewed Tables

https://issues.apache.org/jira/browse/HIVE-1180
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Select#LanguageManualSelect-SelectSyntax
https://cwiki-test.apache.org/confluence/display/Hive/Common+Table+Expression#CommonTableExpression-CTEinViews,CTAS,andInsertStatements
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables

This feature can be used to improve performance for tables where one or more columns have values. By specifying the values that appear very skewed
often (heavy skew) Hive will split those out into separate files (or directories in case of) automatically and take this fact into account during list bucketing
queries so that it can skip or include the whole file if possible.(or directory in case of)list bucketing

This can be specified on a per-table level during table creation.

The following example shows one column with three skewed values, optionally with the STORED AS DIRECTORIES clause which specifies list bucketing.

Example:

CREATE TABLE list_bucket_single (key STRING, value STRING)
 SKEWED BY (key) ON (1,5,6) [STORED AS DIRECTORIES];

And here is an example of a table with two skewed columns.

Example:

CREATE TABLE list_bucket_multiple (col1 STRING, col2 int, col3 STRING)
 SKEWED BY (col1, col2) ON (('s1',1), ('s3',3), ('s13',13), ('s78',78)) [STORED AS DIRECTORIES];

For corresponding ALTER TABLE statements, see below.Alter Table Skewed or Stored as Directories

Temporary Tables

A table that has been created as a temporary table will only be visible to the current session. Data will be stored in the user's scratch directory, and deleted
at the end of the session.

If a temporary table is created with a database/table name of a permanent table which already exists in the database, then within that session any
references to that table will resolve to the temporary table, rather than to the permanent table. The user will not be able to access the original table within
that session without either dropping the temporary table, or renaming it to a non-conflicting name.

Temporary tables have the following limitations:

Partition columns are not supported.
No support for creation of indexes.

S he storage policy for temporary tables can be set to , , or with the tarting in Hive 1.1.0 t memory ssd default hive.exec.temporary.table.storage
configuration parameter (see).HDFS Storage Types and Storage Policies

Example:

CREATE TEMPORARY TABLE list_bucket_multiple (col1 STRING, col2 int, col3 STRING);

Transactional Tables

A table that supports operations with ACID semantics. See for more details about transactional tables.this

Version information

As of Hive 0.10.0 (and). See for additional JIRA tickets that implemented list bucketing in Hive 0.10.0 and HIVE-3072 HIVE-3649 HIVE-3026
0.11.0.

Design documents

Read the and design documents for more information.Skewed Join Optimization List Bucketing

Version information

As of Hive 0.14.0 ().HIVE-7090

Version information

As of Hive 4.0 ().HIVE-18453

https://cwiki-test.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki-test.apache.org/confluence/display/Hive/ListBucketing
https://cwiki-test.apache.org/confluence/display/Hive/ListBucketing
https://issues.apache.org/jira/browse/HIVE-7313
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.temporary.table.storage
http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html#Storage_Types_and_Storage_Policies
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-3072
https://issues.apache.org/jira/browse/HIVE-3649
https://issues.apache.org/jira/browse/HIVE-3026
https://cwiki-test.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki-test.apache.org/confluence/display/Hive/ListBucketing
https://issues.apache.org/jira/browse/HIVE-7090
https://issues.apache.org/jira/browse/HIVE-18453

Example:

CREATE TRANSACTIONAL TABLE transactional_table_test(key string, value string) PARTITIONED BY(ds string) STORED
AS ORC;

Constraints

Hive includes support for non-validated primary and foreign key constraints. Some SQL tools generate more efficient queries when constraints are present.
Since these constraints are not validated, an upstream system needs to ensure data integrity before it is loaded into Hive.

Example:

create table pk(id1 integer, id2 integer,
 primary key(id1, id2) disable novalidate);

create table fk(id1 integer, id2 integer,
 constraint c1 foreign key(id1, id2) references pk(id2, id1) disable novalidate);

Hive includes support for UNIQUE, NOT NULL, DEFAULT and CHECK constraints. Beside UNIQUE all three type of constraints are enforced.

Example:

create table constraints1(id1 integer UNIQUE disable novalidate, id2 integer NOT NULL,
 usr string DEFAULT current_user(), price double CHECK (price > 0 AND price <= 1000));

create table constraints2(id1 integer, id2 integer,
 constraint c1_unique UNIQUE(id1) disable novalidate);

create table constraints3(id1 integer, id2 integer,
 constraint c1_check CHECK(id1 + id2 > 0));

DEFAULT on complex data types such as map, struct, array is not supported.

Drop Table

DROP TABLE [IF EXISTS] table_name [PURGE]; -- (Note: PURGE available in Hive 0.14.0 and later)

DROP TABLE removes metadata and data for this table. The data is actually moved to the .Trash/Current directory if Trash is configured (and PURGE is
not specified). The metadata is completely lost.

When dropping an EXTERNAL table, data in the table will be deleted from the file system. Starting Hive 4.0.0 (NOT

) setting table property external.table.purge=true, will also delete the data.

When dropping a table referenced by views, no warning is given (the views are left dangling as invalid and must be dropped or recreated by the user).

Otherwise, the table information is removed from the metastore and the raw data is removed as if by 'hadoop dfs -rm'. In many cases, this results in the
table data being moved into the user's .Trash folder in their home directory; users who mistakenly DROP TABLEs may thus be able to recover their lost

Version information

As of Hive 2.1.0 ().HIVE-13290

Version information

As of Hive 3.0.0 (, ,).HIVE-16575 HIVE-18726 HIVE-18953

 Unable to render Jira issues macro, execution

error.

https://issues.apache.org/jira/browse/HIVE-13290
https://issues.apache.org/jira/browse/HIVE-16575
https://issues.apache.org/jira/browse/HIVE-18726
https://issues.apache.org/jira/browse/HIVE-18953

data by recreating a table with the same schema, recreating any necessary partitions, and then moving the data back into place manually using Hadoop.
This solution is subject to change over time or across installations as it relies on the underlying implementation; users are strongly encouraged not to drop
tables capriciously.

If PURGE is specified, the table data does not go to the .Trash/Current directory and so cannot be retrieved in the event of a mistaken DROP. The purge
option can also be specified with the table property auto.purge (see above).TBLPROPERTIES

In Hive 0.7.0 or later, DROP returns an error if the table doesn't exist, unless IF EXISTS is specified or the configuration variable hive.exec.drop.
ignorenonexistent is set to true.

See the Alter Partition section below for how to drop partitions.

Truncate Table

TRUNCATE [TABLE] table_name [PARTITION partition_spec];

partition_spec:
 : (partition_column = partition_col_value, partition_column = partition_col_value, ...)

Removes all rows from a table or partition(s). The rows will be trashed if the filesystem Trash is enabled, otherwise they are deleted (as of Hive 2.2.0 with H
). Currently the target table should be native/managed table or an exception will be thrown. User can specify partial partition_spec for truncating IVE-14626

multiple partitions at once and omitting partition_spec will truncate all partitions in the table.

Starting with HIVE 2.3.0 () if the table property "auto.purge" (see HIVE-15880 TBLPROPERTIES above) is set to "true" the data of the table is not moved to
Trash when a TRUNCATE TABLE command is issued against it and cannot be retrieved in the event of a mistaken TRUNCATE. This is applicable only for
managed tables (see). This behavior can be turned off if the "auto.purge" property is unset or set to false for a managed table.managed tables

Starting with Hive 4.0 () the TABLE token is optional, previous versions required it.HIVE-23183

Alter Table/Partition/Column

Alter Table
Rename Table
Alter Table Properties

Alter Table Comment
Add SerDe Properties
Remove SerDe Properties
Alter Table Storage Properties
Alter Table Skewed or Stored as Directories

Alter Table Skewed
Alter Table Not Skewed
Alter Table Not Stored as Directories
Alter Table Set Skewed Location

Alter Table Constraints
Additional Alter Table Statements

Alter Partition
Add Partitions

Dynamic Partitions
Rename Partition
Exchange Partition
Discover Partitions
Partition Retention
Recover Partitions (MSCK REPAIR TABLE)
Drop Partitions
(Un)Archive Partition

Alter Either Table or Partition
Alter Table/Partition File Format
Alter Table/Partition Location
Alter Table/Partition Touch
Alter Table/Partition Protections
Alter Table/Partition Compact
Alter Table/Partition Concatenate
Alter Table/Partition Update columns

Alter Column

Version information: PURGE

The PURGE option is added in version 0.14.0 by .HIVE-7100

Version information

As of Hive 0.11.0 ().HIVE-446

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://issues.apache.org/jira/browse/HIVE-14626
https://issues.apache.org/jira/browse/HIVE-14626
https://issues.apache.org/jira/browse/HIVE-15880
https://issues.apache.org/jira/browse/HIVE-23183
https://issues.apache.org/jira/browse/HIVE-7100
https://issues.apache.org/jira/browse/HIVE-446

Rules for Column Names
Change Column Name/Type/Position/Comment
Add/Replace Columns
Partial Partition Specification

Alter table statements enable you to change the structure of an existing table. You can add columns/partitions, change SerDe, add table and SerDe
properties, or rename the table itself. Similarly, alter table partition statements allow you change the properties of a specific partition in the named table.

Alter Table

Rename Table

ALTER TABLE table_name RENAME TO new_table_name;

This statement lets you change the name of a table to a different name.

As of version 0.6, a rename on a moves its HDFS location. Rename has been changed as of version 2.2.0 () so that a managed table HIVE-14909
managed table's is created without a and under its database directory. Hive versions prior to HDFS location is moved only if the table LOCATION clause
0.6 just renamed the table in the metastore without moving the HDFS location.

Alter Table Properties

ALTER TABLE table_name SET TBLPROPERTIES table_properties;

table_properties:
 : (property_name = property_value, property_name = property_value, ...)

You can use this statement to add your own metadata to the tables. Currently last_modified_user, last_modified_time properties are automatically added
and managed by Hive. Users can add their own properties to this list. You can do DESCRIBE EXTENDED TABLE to get this information.

For more information, see the in Create Table above.TBLPROPERTIES clause

Alter Table Comment

To change the comment of a table you have to change the property of the :comment TBLPROPERTIES

ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comment);

Add SerDe Properties

ALTER TABLE table_name [PARTITION partition_spec] SET SERDE serde_class_name [WITH SERDEPROPERTIES
serde_properties];

ALTER TABLE table_name [PARTITION partition_spec] SET SERDEPROPERTIES serde_properties;

serde_properties:
 : (property_name = property_value, property_name = property_value, ...)

These statements enable you to change a table's SerDe or add user-defined metadata to the table's SerDe object.

The SerDe properties are passed to the table's SerDe when it is being initialized by Hive to serialize and deserialize data. So users can store any
information required for their custom SerDe here. Refer to the and in the Developer Guide for more information, and see SerDe documentation Hive SerDe

 above for details about setting a table's SerDe and SERDEPROPERTIES in a CREATE TABLE statement.Row Format, Storage Format, and SerDe

Note that both and must be quoted.property_name property_value

Example:

ALTER TABLE table_name SET SERDEPROPERTIES ('field.delim' = ',');

Remove SerDe Properties

Version information

https://issues.apache.org/jira/browse/HIVE-14909
https://cwiki-test.apache.org/confluence/display/Hive/SerDe
https://cwiki-test.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe

ALTER TABLE table_name [PARTITION partition_spec] UNSET SERDEPROPERTIES (property_name, ...);

These statements enable you to remove user-defined metadata to the table's SerDe object.

Note that must be quoted.property_name

Example:

ALTER TABLE table_name UNSET SERDEPROPERTIES ('field.delim');

Alter Table Storage Properties

ALTER TABLE table_name CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name, ...)]
 INTO num_buckets BUCKETS;

These statements change the table's physical storage properties.

NOTE: These commands will only modify Hive's metadata, and will reorganize or reformat existing data. Users should make sure the actual data NOT
layout conforms with the metadata definition.

Alter Table Skewed or Stored as Directories

A table's SKEWED and STORED AS DIRECTORIES options can be changed with ALTER TABLE statements. See above for the Skewed Tables
corresponding CREATE TABLE syntax.

Alter Table Skewed

ALTER TABLE table_name SKEWED BY (col_name1, col_name2, ...)
 ON ([(col_name1_value, col_name2_value, ...) [, (col_name1_value, col_name2_value), ...]
 [STORED AS DIRECTORIES];

The STORED AS DIRECTORIES option determines whether a table uses the feature, which creates subdirectories for skewed skewed list bucketing
values.

Alter Table Not Skewed

ALTER TABLE table_name NOT SKEWED;

The NOT SKEWED option makes the table non-skewed and turns off the list bucketing feature (since a list-bucketing table is always skewed). This affects
partitions created after the ALTER statement, but has no effect on partitions created before the ALTER statement.

Alter Table Not Stored as Directories

ALTER TABLE table_name NOT STORED AS DIRECTORIES;

This turns off the list bucketing feature, although the table remains skewed.

Alter Table Set Skewed Location

ALTER TABLE table_name SET SKEWED LOCATION (col_name1="location1" [, col_name2="location2", ...]);

This changes the location map for list bucketing.

Remove SerDe Properties is supported as of Hive 4.0.0 ().HIVE-21952

Version information

As of Hive 0.10.0 (and). See for additional JIRA tickets that implemented list bucketing in Hive 0.10.0 and HIVE-3072 HIVE-3649 HIVE-3026
0.11.0.

https://cwiki-test.apache.org/confluence/display/Hive/Skewed+Join+Optimization
https://cwiki-test.apache.org/confluence/display/Hive/ListBucketing
https://issues.apache.org/jira/browse/HIVE-18842
https://issues.apache.org/jira/browse/HIVE-3072
https://issues.apache.org/jira/browse/HIVE-3649
https://issues.apache.org/jira/browse/HIVE-3026

Alter Table Constraints

 Table constraints can be added or removed via ALTER TABLE statements.

ALTER TABLE table_name ADD CONSTRAINT constraint_name PRIMARY KEY (column, ...) DISABLE NOVALIDATE;
ALTER TABLE table_name ADD CONSTRAINT constraint_name FOREIGN KEY (column, ...) REFERENCES table_name(column,
...) DISABLE NOVALIDATE RELY;
ALTER TABLE table_name ADD CONSTRAINT constraint_name UNIQUE (column, ...) DISABLE NOVALIDATE;
ALTER TABLE table_name CHANGE COLUMN column_name column_name data_type CONSTRAINT constraint_name NOT NULL
ENABLE;
ALTER TABLE table_name CHANGE COLUMN column_name column_name data_type CONSTRAINT constraint_name DEFAULT
default_value ENABLE;
ALTER TABLE table_name CHANGE COLUMN column_name column_name data_type CONSTRAINT constraint_name CHECK
check_expression ENABLE;

ALTER TABLE table_name DROP CONSTRAINT constraint_name;

Additional Alter Table Statements

See below for more DDL statements that alter tables.Alter Either Table or Partition

Alter Partition

Partitions can be added, renamed, exchanged (moved), dropped, or (un)archived by using the PARTITION clause in an ALTER TABLE statement, as
described below. To make the metastore aware of partitions that were added directly to HDFS, you can use the metastore check command (MSCK) or on
Amazon EMR you can use the RECOVER PARTITIONS option of ALTER TABLE. See Alter Either Table or Partition below for more ways to alter
partitions.

Add Partitions

ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec [LOCATION 'location'][, PARTITION
partition_spec [LOCATION 'location'], ...];

partition_spec:
 : (partition_column = partition_col_value, partition_column = partition_col_value, ...)

You can use ALTER TABLE ADD PARTITION to add partitions to a table. Partition values should be quoted only if they are strings. The location must be a
directory inside of which data files reside. (ADD PARTITION changes the table metadata, but does not load data. If the data does not exist in the partition's
location, queries will not return any results.) An error is thrown if the partition_spec for the table already exists. You can use IF NOT EXISTS to skip the
error.

Specifically, the following example will FAIL silently and without error in Hive 0.7, and all queries will go only to dt='2008-08-08' partition, no matter which
partition you specify.

Example:

ALTER TABLE page_view ADD PARTITION (dt='2008-08-08', country='us') location '/path/to/us/part080808'
 PARTITION (dt='2008-08-09', country='us') location '/path/to/us/part080809';

Version information

As of Hive release .2.1.0

Version 1.2+

As of Hive 1.2 (HIVE-10307), the partition values specified in partition specification are type checked, converted, and normalized to conform to
their column types if the property hive.typecheck.on.insert is set to true (default). The values can be number literals.

Version 0.7

Although it is proper syntax to have multiple partition_spec in a single ALTER TABLE, if you do this in version 0.7 your partitioning scheme will
fail. That is, every query specifying a partition will always use only the first partition.

https://issues.apache.org/jira/browse/HIVE-13290
https://issues.apache.org/jira/browse/HIVE-10307
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.typecheck.on.insert

In Hive 0.8 and later, you can add multiple partitions in a single ALTER TABLE statement as shown in the previous example.

In Hive 0.7, if you want to add many partitions you should use the following form:

ALTER TABLE table_name ADD PARTITION (partCol = 'value1') location 'loc1';
ALTER TABLE table_name ADD PARTITION (partCol = 'value2') location 'loc2';
...
ALTER TABLE table_name ADD PARTITION (partCol = 'valueN') location 'locN';

Dynamic Partitions

Partitions can be added to a table dynamically, using a Hive INSERT statement (or a Pig STORE statement). See these documents for details and
examples:

Design Document for Dynamic Partitions
Tutorial: Dynamic-Partition Insert
Hive DML: Dynamic Partition Inserts
HCatalog Dynamic Partitioning

Usage with Pig
Usage from MapReduce

Rename Partition

ALTER TABLE table_name PARTITION partition_spec RENAME TO PARTITION partition_spec;

This statement lets you change the value of a partition column. One of use cases is that you can use this statement to normalize your legacy partition
column value to conform to its type. In this case, the type conversion and normalization are not enabled for the column values in old even partition_spec
with property set to true (default) which allows you to specify any legacy data in form of string in the old .hive.typecheck.on.insert partition_spec

Exchange Partition

Partitions can be exchanged (moved) between tables.

-- Move partition from table_name_1 to table_name_2
ALTER TABLE table_name_2 EXCHANGE PARTITION (partition_spec) WITH TABLE table_name_1;
-- multiple partitions
ALTER TABLE table_name_2 EXCHANGE PARTITION (partition_spec, partition_spec2, ...) WITH TABLE table_name_1;

This statement lets you move the data in a partition from a table to another table that has the same schema and does not already have that partition.
For further details on this feature, see Exchange Partition and HIVE-4095.

Discover Partitions

Table property "discover.partitions" can now be specified to control automatic discovery and synchronization of partition metadata in Hive Metastore.

When Hive Metastore Service (HMS) is started in remote service mode, a background thread (PartitionManagementTask) gets scheduled periodically
every 300s (configurable via metastore.partition.management.task.frequency config) that looks for tables with "discover.partitions" table property set to true
and performs MSCK REPAIR in sync mode. If the table is a transactional table, then Exclusive Lock is obtained for that table before performing MSCK
REPAIR. With this table property, "MSCK REPAIR TABLE table_name SYNC PARTITIONS" is no longer required to be run manually.

Partition Retention

Version information

As of Hive 0.9.

Version information

As of Hive 0.12 (). Multiple partitions supported in Hive versions .HIVE-4095 1.2.2 1.3.0, and 2.0.0+,

Version information

As of Hive 4.0.0 (). HIVE-20707

https://cwiki-test.apache.org/confluence/display/Hive/DynamicPartitions
https://cwiki-test.apache.org/confluence/display/Hive/Tutorial#Tutorial-Dynamic-PartitionInsert
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-DynamicPartitionInserts
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+DynamicPartitions
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+DynamicPartitions#HCatalogDynamicPartitions-UsagewithPig
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+DynamicPartitions#HCatalogDynamicPartitions-UsagefromMapReduce
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.typecheck.on.insert
https://cwiki-test.apache.org/confluence/display/Hive/Exchange+Partition
https://issues.apache.org/jira/browse/HIVE-4095
https://issues.apache.org/jira/browse/HIVE-4095
https://issues.apache.org/jira/browse/HIVE-11745
https://issues.apache.org/jira/browse/HIVE-20707

Table property "partition.retention.period" can now be specified for partitioned tables with a retention interval. When a retention interval is specified, the
background thread running in HMS (refer Discover Partitions section), will check the age (creation time) of the partition and if the partition's age is older
than the retention period, it will be dropped. Dropping partitions after retention period will also delete the data in that partition. For example, if an external
partitioned table with 'date' partition is created with table properties "discover.partitions"="true" and "partition.retention.period"="7d" then only the partitions
created in last 7 days are retained.

Recover Partitions (MSCK REPAIR TABLE)

Hive stores a list of partitions for each table in its metastore. If, however, new partitions are directly added to HDFS (say by using hadoop fs -put
command) or removed from HDFS, the metastore (and hence Hive) will not be aware of these changes to partition information unless the user runs ALTER

 commands on each of the newly added or removed partitions, respectively.TABLE table_name ADD/DROP PARTITION

However, users can run a metastore check command with the repair table option:

MSCK [REPAIR] TABLE table_name [ADD/DROP/SYNC PARTITIONS];

which will update metadata about partitions to the Hive metastore for partitions for which such metadata doesn't already exist. The default option for MSC
command is ADD PARTITIONS. With this option, it will add any partitions that exist on HDFS but not in metastore to the metastore. The DROP
PARTITIONS option will remove the partition information from metastore, that is already removed from HDFS. The SYNC PARTITIONS option is
equivalent to calling both ADD and DROP PARTITIONS. See and for more details. When there is a large number of untracked HIVE-874 HIVE-17824
partitions, there is a provision to run MSCK REPAIR TABLE batch wise to avoid OOME (. By giving the configured batch size for the Out of Memory Error)
property it can run in the batches internally. The default value of the property is zero, it means it will execute all the partitions hive.msck.repair.batch.size
at once. MSCK command without the REPAIR option can be used to find details about metadata mismatch metastore.

The equivalent command on Amazon Elastic MapReduce (EMR)'s version of Hive is:

ALTER TABLE table_name RECOVER PARTITIONS;

Starting with Hive 1.3, MSCK will throw exceptions if directories with disallowed characters in partition values are found on HDFS. Use hive.msck.path.
 setting on the client to alter this behavior; "skip" will simply skip the directories. "ignore" will try to create partitions anyway (old behavior). This validation

may or may not work.

Drop Partitions

ALTER TABLE table_name DROP [IF EXISTS] PARTITION partition_spec[, PARTITION partition_spec, ...]
 [IGNORE PROTECTION] [PURGE]; -- (Note: PURGE available in Hive 1.2.0 and later, IGNORE PROTECTION
not available 2.0.0 and later)

You can use ALTER TABLE DROP PARTITION to drop a partition for a table. This removes the data and metadata for this partition. The data is actually
moved to the .Trash/Current directory if Trash is configured, unless PURGE is specified, (see above). but the metadata is completely lost Drop Table

For tables that are protected by , you can use the predicate IGNORE PROTECTION to drop a specified partition or set of partitions NO_DROP CASCADE
(for example, when splitting a table between two Hadoop clusters):

ALTER TABLE table_name DROP [IF EXISTS] PARTITION partition_spec IGNORE PROTECTION;

The above command will drop that partition regardless of protection stats.

If PURGE is specified, the partition data does not go to the .Trash/Current directory and so cannot be retrieved in the event of a mistaken DROP:

Version information

As of Hive 4.0.0 (). HIVE-20707

Version Information: PROTECTION

IGNORE PROTECTION is no longer available in versions 2.0.0 and later. This functionality is replaced by using one of the several security
options available with Hive (see). See for details.SQL Standard Based Hive Authorization HIVE-11145

Version information: PURGE

The PURGE option is added to ALTER TABLE in version 1.2.1 by .HIVE-10934

https://issues.apache.org/jira/browse/HIVE-874
https://issues.apache.org/jira/browse/HIVE-17824
https://issues.apache.org/jira/browse/HIVE-20707
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://issues.apache.org/jira/browse/HIVE-11145
https://issues.apache.org/jira/browse/HIVE-10934

ALTER TABLE table_name DROP [IF EXISTS] PARTITION partition_spec PURGE; -- (Note: Hive 1.2.0 and later)

The purge option can also be specified with the table property auto.purge (see above).TBLPROPERTIES

In Hive 0.7.0 or later, DROP returns an error if the partition doesn't exist, unless IF EXISTS is specified or the configuration variable hive.exec.drop.
ignorenonexistent is set to true.

ALTER TABLE page_view DROP PARTITION (dt='2008-08-08', country='us');

(Un)Archive Partition

ALTER TABLE table_name ARCHIVE PARTITION partition_spec;
ALTER TABLE table_name UNARCHIVE PARTITION partition_spec;

Archiving is a feature to moves a partition's files into a Hadoop Archive (HAR). Note that only the file count will be reduced; HAR does not provide any
compression. See for more informationLanguageManual Archiving

Alter Either Table or Partition

Alter Table/Partition File Format

ALTER TABLE table_name [PARTITION partition_spec] SET FILEFORMAT file_format;

This statement changes the table's (or partition's) file format. For available file_format options, see the section above on . The operation CREATE TABLE
only changes the table metadata. Any conversion of existing data must be done outside of Hive.

Alter Table/Partition Location

ALTER TABLE table_name [PARTITION partition_spec] SET LOCATION "new location";

Alter Table/Partition Touch

ALTER TABLE table_name TOUCH [PARTITION partition_spec];

TOUCH reads the metadata, and writes it back. This has the effect of causing the pre/post execute hooks to fire. An example use case is if you have a
hook that logs all the tables/partitions that were modified, along with an external script that alters the files on HDFS directly. Since the script modifies files
outside of hive, the modification wouldn't be logged by the hook. The external script could call TOUCH to fire the hook and mark the said table or partition
as modified.

Also, it may be useful later if we incorporate reliable last modified times. Then touch would update that time as well.

Note that TOUCH doesn't create a table or partition if it doesn't already exist. (See .)Create Table

Alter Table/Partition Protections

ALTER TABLE table_name [PARTITION partition_spec] ENABLE|DISABLE NO_DROP [CASCADE];

ALTER TABLE table_name [PARTITION partition_spec] ENABLE|DISABLE OFFLINE;

Protection on data can be set at either the table or partition level. Enabling NO_DROP prevents a table from being . Enabling OFFLINE prevents dropped
the data in a table or partition from being queried, but the metadata can still be accessed.

Version information

As of Hive 0.7.0 (). The CASCADE clause for NO_DROP was added in HIVE 0.8.0 ().HIVE-1413 HIVE-2605

This functionality was removed in Hive 2.0.0. This functionality is replaced by using one of the several security options available with Hive (see S
QL Standard Based Hive Authorization). See HIVE-11145 for details.

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Archiving
https://issues.apache.org/jira/browse/HIVE-1413
https://issues.apache.org/jira/browse/HIVE-2605
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://issues.apache.org/jira/browse/HIVE-11145

If any partition in a table has NO_DROP enabled, the table cannot be dropped either. Conversely, if a table has NO_DROP enabled then partitions may be
dropped, but with NO_DROP CASCADE partitions cannot be dropped either unless the specifies IGNORE PROTECTIONdrop partition command .

Alter Table/Partition Compact

ALTER TABLE table_name [PARTITION (partition_key = 'partition_value' [, ...])]
 COMPACT 'compaction_type'[AND WAIT]
 [CLUSTERED INTO n BUCKETS]
 [ORDER BY col_list]
 [POOL 'pool_name']
 [WITH OVERWRITE TBLPROPERTIES ("property"="value" [, ...])];

In general you do not need to request compactions when are being used, because the system will detect the need for them and initiate Hive transactions
the compaction. However, if compaction is turned off for a table or you want to compact the table at a time the system would not choose to, ALTER TABLE
can initiate the compaction. By default the statement will enqueue a request for compaction and return. To watch the progress of the compaction, use SHO

. W COMPACTIONS As of Hive "2.2.0 AND WAIT" may be specified to have the operation block until compaction completes.

The compaction_type can be MAJOR, MINOR or REBALANCE. See the Basic Design section in for more information.Hive Transactions

More in formation on compaction pooling can be found here: Compaction pooling

More in formation on rebalance compaction pooling can be found here: Rebalance Compaction

Alter Table/Partition Concatenate

ALTER TABLE table_name [PARTITION (partition_key = 'partition_value' [, ...])] CONCATENATE;

If the table or partition contains many small RCFiles or ORC files, then the above command will merge them into larger files. In case of RCFile the merge
happens at block level whereas for ORC files the merge happens at stripe level thereby avoiding the overhead of decompressing and decoding the data.

Alter Table/Partition Update columns

ALTER TABLE table_name [PARTITION (partition_key = 'partition_value' [, ...])] UPDATE COLUMNS;

Tables that have serdes which self-describe the table schema may have different schemas in reality and the ones stored in Hive Metastore. For example
when a user creates an Avro stored table using a schema url or schema literal, the schema will be inserted into HMS and then will never be changed in
HMS regardless of url or literal changes within the serde. This can lead to problems especially when integrating with other Apache components.

The update columns feature provides a way for the user to let any schema changes made in the serde to be synced into HMS. It works on both the table
and the partitions levels, and obviously only for tables whose schema is not tracked by HMS (see metastore.serdes.using.metastore.for.schema). Using
the command on these latter serde types will result in error.

Version information

In Hive release and later when are being used, the ALTER TABLE statement can request of a table or partition. 0.13.0 transactions compaction
As of Hive release 1.3.0 and 2.1.0 when transactions are being used, the ALTER TABLE ... COMPACT statement can include a TBLPROPERTI

 clause that is either to change compaction MapReduce job properties or to overwrite any other Hive table properties. More details can be ES
found . here
As of Hive release is available.4.0.0-alpha-2 compaction pooling
As of Hive release is available.4.0.0 rebalance compaction

The [CLUSTERED INTO n BUCKETS] and [ORDER BY col_list] clauses are only supported for REBALANCE compaction.

Version information

In Hive release RCFile added support for fast block level merging of small RCFiles using concatenate command. In Hive release 0.8.0 0.14.0
ORC files added support fast stripe level merging of small ORC files using concatenate command.

Version information

In Hive release this command was added to let the user sync serde stored schema information to metastore.3.0.0

https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-15920
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-BasicDesign
https://cwiki-test.apache.org/confluence/display/Hive/Compaction+pooling
https://cwiki-test.apache.org/confluence/display/Hive/Rebalance+compaction
https://issues.apache.org/jira/browse/HIVE-5317
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-BasicDesign
https://issues.apache.org/jira/browse/HIVE-13354
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-TableProperties
https://issues.apache.org/jira/browse/HIVE-27056?jql=project%20%3D%20HIVE%20AND%20fixVersion%20%3D%204.0.0-alpha-2
https://cwiki-test.apache.org/confluence/display/Hive/Compaction+pooling
https://issues.apache.org/jira/browse/HIVE-27094?jql=project%20%3D%20HIVE%20AND%20fixVersion%20%3D%204.0.0
https://cwiki-test.apache.org/confluence/display/Hive/Rebalance+compaction
https://issues.apache.org/jira/browse/HIVE-1950
https://issues.apache.org/jira/browse/HIVE-7509
https://issues.apache.org/jira/browse/HIVE-15995

Alter Column

Rules for Column Names

Column names are case insensitive.

Change Column Name/Type/Position/Comment

ALTER TABLE table_name [PARTITION partition_spec] CHANGE [COLUMN] col_old_name col_new_name column_type
 [COMMENT col_comment] [FIRST|AFTER column_name] [CASCADE|RESTRICT];

This command will allow users to change a column's name, , comment, or position, or an arbitrary combination of them. The PARTITION clause data type
is available in and later; see for usage. A patch for Hive 0.13 is also available (see).Hive 0.14.0 Upgrading Pre-Hive 0.13.0 Decimal Columns HIVE-7971

The CASCADE|RESTRICT clause is available in . Hive 1.1.0 ALTER TABLE CHANGE COLUMN with CASCADE command changes the columns of a
RESTRICT is the default, limiting column change only to table metadata.table's metadata, and cascades the same change to all the partition metadata.

Example:

CREATE TABLE test_change (a int, b int, c int);

// First change column a's name to a1.
ALTER TABLE test_change CHANGE a a1 INT;

// Next change column a1's name to a2, its data type to string, and put it after column b.
ALTER TABLE test_change CHANGE a1 a2 STRING AFTER b;
// The new table's structure is: b int, a2 string, c int.

// Then change column c's name to c1, and put it as the first column.
ALTER TABLE test_change CHANGE c c1 INT FIRST;
// The new table's structure is: c1 int, b int, a2 string.

// Add a comment to column a1
ALTER TABLE test_change CHANGE a1 a1 INT COMMENT 'this is column a1';

Add/Replace Columns

ALTER TABLE table_name
 [PARTITION partition_spec] -- (Note: Hive 0.14.0 and later)
 ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...)
 [CASCADE|RESTRICT] -- (Note: Hive 1.1.0 and later)

Version information

In Hive release 0.12.0 and earlier, column names can only contain alphanumeric and underscore characters.

In Hive release 0.13.0 and later, by default column names can be specified within backticks () and contain any character (), ` Unicode HIVE-6013
. Within a string delimited by backticks, all characters are treated literally except that however, dot () and colon () yield errors on querying. :

double backticks () represent one backtick character. The pre-0.13.0 behavior can be used by setting `` hive.support.quoted.
 to , in which case backticked names are interpreted as regular expressions. See identifiers none Supporting Quoted Identifiers in Column

 for details.Names

Backtick quotation enables the use of reserved keywords for column names, as well as table names.

ALTER TABLE CHANGE COLUMN CASCADE clause will override the table partition's column metadata regardless of the table or partition's pro
. Use with discretion.tection mode

The column change command will only modify Hive's metadata, and will not modify data. Users should make sure the actual data layout of the
table/partition conforms with the metadata definition.

https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Types
https://issues.apache.org/jira/browse/HIVE-7971
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-UpgradingPre-Hive0.13.0DecimalColumns
https://issues.apache.org/jira/browse/HIVE-7971
https://issues.apache.org/jira/browse/HIVE-8839
http://en.wikipedia.org/wiki/List_of_Unicode_characters
https://issues.apache.org/jira/browse/HIVE-6013
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.support.quoted.identifiers
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.support.quoted.identifiers
https://issues.apache.org/jira/secure/attachment/12618321/QuotedIdentifier.html
https://issues.apache.org/jira/secure/attachment/12618321/QuotedIdentifier.html

ADD COLUMNS lets you add new columns to the end of the existing columns but before the partition columns. This is supported for Avro backed tables as
well, for and later.Hive 0.14

REPLACE COLUMNS removes all existing columns and adds the new set of columns. This can be done only for tables with a native SerDe
(DynamicSerDe, MetadataTypedColumnsetSerDe, LazySimpleSerDe and ColumnarSerDe). Refer to for more information. Hive SerDe REPLACE
COLUMNS can also be used to drop columns. For example, "ALTER TABLE test_change REPLACE COLUMNS (a int, b int);" will remove

column 'c' from test_change's schema.

The PARTITION clause is available in Hive 0.14.0 and later; see Upgrading Pre-Hive 0.13.0 Decimal Columns for usage.

The CASCADE|RESTRICT clause is available in . ALTER TABLE ADD|REPLACE COLUMNS with CASCADE command changes the columns Hive 1.1.0
of a table's metadata, and cascades the same change to all the partition metadata. RESTRICT is the default, limiting column changes only to table
metadata.

Partial Partition Specification

As of Hive 0.14 (), users are able to provide a partial partition spec for certain above alter column statements, similar to dynamic partitioning. So HIVE-8411
rather than having to issue an alter column statement for each partition that needs to be changed:

ALTER TABLE foo PARTITION (ds='2008-04-08', hr=11) CHANGE COLUMN dec_column_name dec_column_name DECIMAL(38,18);
ALTER TABLE foo PARTITION (ds='2008-04-08', hr=12) CHANGE COLUMN dec_column_name dec_column_name DECIMAL(38,18);
...

... you can change many existing partitions at once using a single ALTER statement with a partial partition specification:

// hive.exec.dynamic.partition needs to be set to true to enable dynamic partitioning with ALTER PARTITION
SET hive.exec.dynamic.partition = true;

// This will alter all existing partitions in the table with ds='2008-04-08' -- be sure you know what you are
doing!
ALTER TABLE foo PARTITION (ds='2008-04-08', hr) CHANGE COLUMN dec_column_name dec_column_name DECIMAL(38,18);

// This will alter all existing partitions in the table -- be sure you know what you are doing!
ALTER TABLE foo PARTITION (ds, hr) CHANGE COLUMN dec_column_name dec_column_name DECIMAL(38,18);

Similar to dynamic partitioning, must be set to true to enable use of partial partition specs during ALTER PARTITION. This is hive.exec.dynamic.partition
supported for the following operations:

Change column
Add column
Replace column
File Format
Serde Properties

Create/Drop/Alter View

Create View
Drop View
Alter View Properties
Alter View As Select

Create View

ALTER TABLE ADD or REPLACE COLUMNS CASCADE will override the table partition's column metadata regardless of the table or partition's
. Use with discretion.protection mode

The column change command will only modify Hive's metadata, and will not modify data. Users should make sure the actual data layout of the
table/partition conforms with the metadata definition.

Version information

View support is only available in Hive 0.6 and later.

https://issues.apache.org/jira/browse/HIVE-7446
https://cwiki-test.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HiveSerDe
https://issues.apache.org/jira/browse/HIVE-7971
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-UpgradingPre-Hive0.13.0DecimalColumns
https://issues.apache.org/jira/browse/HIVE-8839
https://issues.apache.org/jira/browse/HIVE-8411
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.dynamic.partition

CREATE VIEW [IF NOT EXISTS] [db_name.]view_name [(column_name [COMMENT column_comment], ...)]
 [COMMENT view_comment]
 [TBLPROPERTIES (property_name = property_value, ...)]
 AS SELECT ...;

CREATE VIEW creates a view with the given name. An error is thrown if a table or view with the same name already exists. You can use IF NOT EXISTS
to skip the error.

If no column names are supplied, the names of the view's columns will be derived automatically from the defining SELECT expression. (If the SELECT
contains unaliased scalar expressions such as x+y, the resulting view column names will be generated in the form _C0, _C1, etc.) When renaming
columns, column comments can also optionally be supplied. (Comments are not automatically inherited from underlying columns.)

A CREATE VIEW statement will fail if the view's defining SELECT expression is invalid.

Note that a view is a purely logical object with no associated storage. When a query references a view, the view's definition is evaluated in order to
produce a set of rows for further processing by the query. (This is a conceptual description; in fact, as part of query optimization, Hive may combine the
view's definition with the query's, e.g. pushing filters from the query down into the view.)

A view's schema is frozen at the time the view is created; subsequent changes to underlying tables (e.g. adding a column) will not be reflected in the
view's schema. If an underlying table is dropped or changed in an incompatible fashion, subsequent attempts to query the invalid view will fail.

Views are read-only and may not be used as the target of LOAD/INSERT/ALTER. For changing metadata, see .ALTER VIEW

A view may contain ORDER BY and LIMIT clauses. If a referencing query also contains these clauses, the query-level clauses are evaluated the after
view clauses (and after any other operations in the query). For example, if a view specifies LIMIT 5, and a referencing query is executed as (select * from v
LIMIT 10), then at most 5 rows will be returned.

Starting with , the view's select statement can include one or more common table expressions (CTEs) as shown in the . For Hive 0.13.0 SELECT syntax
examples of CTEs in CREATE VIEW statements, see .Common Table Expression

Example:

CREATE VIEW onion_referrers(url COMMENT 'URL of Referring page')
 COMMENT 'Referrers to The Onion website'
 AS
 SELECT DISTINCT referrer_url
 FROM page_view
 WHERE page_url='http://www.theonion.com';

Use to display the CREATE VIEW statement that created a view. As of Hive 2.2.0, displays a list of views in a SHOW CREATE TABLE SHOW VIEWS
database.

Drop View

DROP VIEW [IF EXISTS] [db_name.]view_name;

DROP VIEW removes metadata for the specified view. (It is illegal to use DROP TABLE on a view.)

When dropping a view referenced by other views, no warning is given (the dependent views are left dangling as invalid and must be dropped or recreated
by the user).

In Hive 0.7.0 or later, DROP returns an error if the view doesn't exist, unless IF EXISTS is specified or the configuration variable hive.exec.drop.
 is set to true.ignorenonexistent

Example:

DROP VIEW onion_referrers;

Alter View Properties

Version Information

Originally, the file format for views was hard coded as SequenceFile. Hive 2.1.0 () made views follow the same defaults as tables HIVE-13736
and indexes using the and properties. hive.default.fileformat hive.default.fileformat.managed

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-AlterViewProperties
https://issues.apache.org/jira/browse/HIVE-1180
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select#LanguageManualSelect-SelectSyntax
https://cwiki.apache.org/confluence/display/Hive/Common+Table+Expression#CommonTableExpression-CTEinViews,CTAS,andInsertStatements
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://issues.apache.org/jira/browse/HIVE-13736
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.default.fileformat
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.default.fileformat.managed

ALTER VIEW [db_name.]view_name SET TBLPROPERTIES table_properties;

table_properties:
 : (property_name = property_value, property_name = property_value, ...)

As with ALTER TABLE, you can use this statement to add your own metadata to a view.

Alter View As Select

ALTER VIEW [db_name.]view_name AS select_statement;

Alter View As Select changes the definition of a view, which must exist. The syntax is similar to that for CREATE VIEW and the effect is the same as for
CREATE OR REPLACE VIEW.

Note: The view must already exist, and if the view has partitions, it could not be replaced by Alter View As Select.

Create/Drop/Alter Materialized View

Create Materialized View
Drop Materialized View
Alter Materialized View

This section provides an introduction to Hive materialized views syntax. More information about materialized view support and usage in Hive can be found
.here

Create Materialized View

CREATE MATERIALIZED VIEW [IF NOT EXISTS] [db_name.]materialized_view_name
 [DISABLE REWRITE]
 [COMMENT materialized_view_comment]
 [PARTITIONED ON (col_name, ...)]
 [CLUSTERED ON (col_name, ...) | DISTRIBUTED ON (col_name, ...) SORTED ON (col_name, ...)]
 [
 [ROW FORMAT row_format]
 [STORED AS file_format]
 | STORED BY 'storage.handler.class.name' [WITH SERDEPROPERTIES (...)]
]
 [LOCATION hdfs_path]
 [TBLPROPERTIES (property_name=property_value, ...)]
AS SELECT ...;

CREATE MATERIALIZED VIEW creates a view with the given name. An error is thrown if a table, view or materialized view with the same name already
exists. You can use IF NOT EXISTS to skip the error.

The names of the materialized view's columns will be derived automatically from the defining SELECT expression.

A CREATE MATERIALIZED VIEW statement will fail if the view's defining SELECT expression is invalid.

By default, materialized views are enabled to be used by the query optimizer for automatic rewriting when they are created.

Version information

As of .Hive 0.11

Version information

Materialized view support is only available in Hive 3.0 and later.

Version information

PARTITIONED ON is supported as of Hive 3.2.0 ().HIVE-14493

Version information

https://cwiki-test.apache.org/confluence/display/Hive/Materialized+views
https://issues.apache.org/jira/browse/HIVE-3834
https://issues.apache.org/jira/browse/HIVE-14493

Drop Materialized View

DROP MATERIALIZED VIEW [db_name.]materialized_view_name;

DROP MATERIALIZED VIEW removes metadata and data for this materialized view.

Alter Materialized View

Once a materialized view has been created, the optimizer will be able to exploit its definition semantics to automatically rewrite incoming queries using
materialized views, and hence, accelerate query execution.

Users can selectively enable/disable materialized views for rewriting. Recall that, by default, materialized views are enabled for rewriting at creation time.
To alter that behavior, the following statement can be used:

ALTER MATERIALIZED VIEW [db_name.]materialized_view_name ENABLE|DISABLE REWRITE;

Create/Drop/Alter Index

This section provides a brief introduction to Hive indexes, which are documented more fully here:

Overview of Hive Indexes
Indexes design document

In Hive 0.12.0 and earlier releases, the index name is case-sensitive for CREATE INDEX and DROP INDEX statements. However, ALTER INDEX requires
an index name that was created with lowercase letters (see). This bug is fixed in by making index names case-insensitive for all HIVE-2752 Hive 0.13.0
HiveQL statements. For releases prior to 0.13.0, the best practice is to use lowercase letters for all index names.

Create Index

CREATE INDEX index_name
 ON TABLE base_table_name (col_name, ...)
 AS index_type
 [WITH DEFERRED REBUILD]
 [IDXPROPERTIES (property_name=property_value, ...)]
 [IN TABLE index_table_name]
 [
 [ROW FORMAT ...] STORED AS ...
 | STORED BY ...
]
 [LOCATION hdfs_path]
 [TBLPROPERTIES (...)]
 [COMMENT "index comment"];

CREATE INDEX creates an index on a table using the given list of columns as keys. See CREATE INDEX in the design document.Indexes

Drop Index

DROP INDEX [IF EXISTS] index_name ON table_name;

DROP INDEX drops the index, as well as deleting the index table.

In Hive 0.7.0 or later, DROP returns an error if the index doesn't exist, unless IF EXISTS is specified or the configuration variable hive.exec.drop.
 is set to true.ignorenonexistent

CLUSTERED/DISTRIBUTED/SORTED ON is supported as of Hive 4.0.0 ().HIVE-18842

Version information

As of Hive 0.7.

Indexing Is Removed since 3.0! See Indexes design document

https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Indexing
https://cwiki-test.apache.org/confluence/display/Hive/IndexDev
https://issues.apache.org/jira/browse/HIVE-2752
https://issues.apache.org/jira/browse/HIVE-2752
https://cwiki-test.apache.org/confluence/display/Hive/IndexDev#IndexDev-CREATEINDEX
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://issues.apache.org/jira/browse/HIVE-18842
https://cwiki-test.apache.org/confluence/display/Hive/IndexDev

Alter Index

ALTER INDEX index_name ON table_name [PARTITION partition_spec] REBUILD;

ALTER INDEX ... REBUILD builds an index that was created using the WITH DEFERRED REBUILD clause, or rebuilds a previously built index. If
PARTITION is specified, only that partition is rebuilt.

Create/Drop Macro

Hive 0.12.0 introduced macros to HiveQL, prior to which they could only be created in Java.

Create Temporary Macro

CREATE TEMPORARY MACRO macro_name([col_name col_type, ...]) expression;

CREATE TEMPORARY MACRO creates a macro using the given optional list of columns as inputs to the expression. Macros exist for the duration of the
current session.

Examples:

CREATE TEMPORARY MACRO fixed_number() 42;
CREATE TEMPORARY MACRO string_len_plus_two(x string) length(x) + 2;
CREATE TEMPORARY MACRO simple_add (x int, y int) x + y;

Drop Temporary Macro

DROP TEMPORARY MACRO [IF EXISTS] macro_name;

DROP TEMPORARY MACRO returns an error if the function doesn't exist, unless IF EXISTS is specified.

Create/Drop/Reload Function

Temporary Functions

Create Temporary Function

CREATE TEMPORARY FUNCTION function_name AS class_name;

This statement lets you create a function that is implemented by the class_name. You can use this function in Hive queries as long as the session lasts.
You can use any class that is in the class path of Hive. You can add jars to class path by executing 'ADD JAR' statements. Please refer to the CLI section

, including , for more information on how to add/delete files from the Hive classpath. Using this, you can Hive Interactive Shell Commands Hive Resources
register User Defined Functions (UDF's).

Also see for general information about creating custom UDFs.Hive Plugins

Drop Temporary Function

Version information

As of Hive 0.12.0.

Bug fixes:

Prior to when a HiveQL macro was used more than once while processing the same row, Hive returned the same Hive 1.3.0 and 2.0.0
result for all invocations even though the arguments were different. (See .)HIVE-11432
Prior to Hive 1.3.0 and 2.0.0 an ORDER BY clause could give wrong when multiple macros were used while , processing the same row
results. (See .)HIVE-12277
Prior to Hive 2.1.0 when multiple macros were used , results of the later macros were overwritten by while processing the same row
that of the first. (See .)HIVE-13372

https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Cli#LanguageManualCli-HiveInteractiveShellCommands
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Cli#LanguageManualCli-HiveResources
https://cwiki-test.apache.org/confluence/display/Hive/HivePlugins
https://issues.apache.org/jira/browse/HIVE-2655
https://issues.apache.org/jira/browse/HIVE-11432
https://issues.apache.org/jira/browse/HIVE-11432
https://issues.apache.org/jira/browse/HIVE-12277
https://issues.apache.org/jira/browse/HIVE-12277
https://issues.apache.org/jira/browse/HIVE-13372
https://issues.apache.org/jira/browse/HIVE-13372

You can unregister a UDF as follows:

DROP TEMPORARY FUNCTION [IF EXISTS] function_name;

In Hive 0.7.0 or later, DROP returns an error if the function doesn't exist, unless IF EXISTS is specified or the configuration variable hive.exec.drop.
 is set to true.ignorenonexistent

Permanent Functions

In Hive 0.13 or later, functions can be registered to the metastore, so they can be referenced in a query without having to create a temporary function each
session.

Create Function

CREATE FUNCTION [db_name.]function_name AS class_name
 [USING JAR|FILE|ARCHIVE 'file_uri' [, JAR|FILE|ARCHIVE 'file_uri']];

This statement lets you create a function that is implemented by the class_name. Jars, files, or archives which need to be added to the environment can be
specified with the USING clause; when the function is referenced for the first time by a Hive session, these resources will be added to the environment as if

 had been issued. If Hive is not in local mode, then the resource location must be a non-local URI such as an HDFS location.ADD JAR/FILE

The function will be added to the database specified, or to the current database at the time that the function was created. The function can be referenced
by fully qualifying the function name (db_name.function_name), or can be referenced without qualification if the function is in the current database.

Drop Function

DROP FUNCTION [IF EXISTS] function_name;

DROP returns an error if the function doesn't exist, unless IF EXISTS is specified or the configuration variable is set to hive.exec.drop.ignorenonexistent
true.

Reload Function

RELOAD (FUNCTIONS|FUNCTION);

As of , creating permanent functions in one Hive CLI session may not be reflected in HiveServer2 or other Hive CLI sessions, if they were HIVE-2573
started before the function was created. Issuing RELOAD FUNCTIONS within a HiveServer2 or HiveCLI session will allow it to pick up any changes to the
permanent functions that may have been done by a different HiveCLI session. Due to backward compatibility reasons RELOAD FUNCTION; is also
accepted.

Create/Drop/Grant/Revoke Roles and Privileges

Hive deprecated authorization mode / Legacy Mode has information about these DDL statements:

CREATE ROLE
GRANT ROLE
REVOKE ROLE
GRANT privilege_type
REVOKE privilege_type
DROP ROLE
SHOW ROLE GRANT

Version information

As of Hive 0.13.0 ().HIVE-6047

Version information

As of Hive 0.13.0 ().HIVE-6047

Version information

As of Hive 1.2.0 ().HIVE-2573

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Cli#LanguageManualCli-HiveResources
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.drop.ignorenonexistent
https://issues.apache.org/jira/browse/HIVE-2573
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-Create/DropRole
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-Grant/RevokeRoles
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-Grant/RevokeRoles
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-Grant/RevokePrivileges
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-Grant/RevokePrivileges
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-Create/DropRole
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-ViewingGrantedRoles
https://issues.apache.org/jira/browse/HIVE-6047
https://issues.apache.org/jira/browse/HIVE-6047
https://issues.apache.org/jira/browse/HIVE-2573

SHOW GRANT

For in Hive 0.13.0 and later releases, see these DDL statements:SQL standard based authorization

Role Management Commands
CREATE ROLE
GRANT ROLE
REVOKE ROLE
DROP ROLE
SHOW ROLES
SHOW ROLE GRANT
SHOW CURRENT ROLES
SET ROLE
SHOW PRINCIPALS

Object Privilege Commands
GRANT privilege_type
REVOKE privilege_type
SHOW GRANT

Show

Show Databases
Show Connectors
Show Tables/Views/Materialized Views/Partitions/Indexes

Show Tables
Show Views
Show Materialized Views
Show Partitions
Show Table/Partition Extended
Show Table Properties
Show Create Table
Show Indexes

Show Columns
Show Functions
Show Granted Roles and Privileges
Show Locks
Show Conf
Show Transactions
Show Compactions

These statements provide a way to query the Hive metastore for existing data and metadata accessible to this Hive system.

Show Databases

SHOW (DATABASES|SCHEMAS) [LIKE 'identifier_with_wildcards'];

SHOW DATABASES or SHOW SCHEMAS lists all of the databases defined in the metastore. The uses of SCHEMAS and DATABASES are
interchangeable – they mean the same thing.

The optional LIKE clause allows the list of databases to be filtered using a regular expression. Wildcards in the regular expression can only be '*' for any
character(s) or '|' for a choice. Examples are 'employees', 'emp*', 'emp*|*ees', all of which will match the database named 'employees'.

Show Connectors

SHOW CONNECTORS;

Since Hive 4.0.0 via HIVE-24396

SHOW CONNECTORS lists all of the connectors defined in the metastore (depending on the user's access).

Show Tables/Views/Materialized Views/Partitions/Indexes

Show Tables

Version information: SHOW DATABASES

Starting from 4.0.0 we accept only SQL type like expressions containing '%' for any character(s), and '_' for a single character. Examples are
'employees', 'emp%', 'emplo_ees', all of which will match the database named 'employees'.

https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-ViewingGrantedPrivileges
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-CreateRole
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-GrantRole
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-RevokeRole
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-DropRole
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowRoles
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowRoleGrant
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowCurrentRoles
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-SetRole
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowPrincipals
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Grant
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Revoke
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowGrant
https://issues.apache.org/jira/browse/HIVE-24396

SHOW TABLES [IN database_name] ['identifier_with_wildcards'];

SHOW TABLES lists all the base tables and views in the current database (or the one explicitly named using the clause) with names matching the IN
optional regular expression. Wildcards in the regular expression can only be '*' for any character(s) or '|' for a choice. Examples are 'page_view', 'page_v*',
'*view|page*', all which will match the 'page_view' table. Matching tables are listed in alphabetical order. It is not an error if there are no matching tables
found in metastore. If no regular expression is given then all tables in the selected database are listed.

Show Views

SHOW VIEWS [IN/FROM database_name] [LIKE 'pattern_with_wildcards'];

SHOW VIEWS lists all the views in the current database (or the one explicitly named using the or clause) with names matching the optional regular IN FROM
expression. Wildcards in the regular expression can only be '*' for any character(s) or '|' for a choice. Examples are 'page_view', 'page_v*', '*view|page*', all
which will match the 'page_view' view. Matching views are listed in alphabetical order. It is not an error if no matching views are found in metastore. If no
regular expression is given then all views in the selected database are listed.

Examples

SHOW VIEWS; -- show all views in the current database
SHOW VIEWS 'test_*'; -- show all views that start with "test_"
SHOW VIEWS '*view2'; -- show all views that end in "view2"
SHOW VIEWS LIKE 'test_view1|test_view2'; -- show views named either "test_view1" or "test_view2"
SHOW VIEWS FROM test1; -- show views from database test1
SHOW VIEWS IN test1; -- show views from database test1 (FROM and IN are same)
SHOW VIEWS IN test1 "test_*"; -- show views from database test2 that start with "test_"

Show Materialized Views

SHOW MATERIALIZED VIEWS [IN/FROM database_name] [LIKE 'pattern_with_wildcards’];

SHOW MATERIALIZED VIEWS lists all the views in the current database (or the one explicitly named using the or clause) with names matching IN FROM
the optional regular expression. It also shows additional information about the materialized view, e.g., whether rewriting is enabled, and the refresh mode
for the materialized view. Wildcards in the regular expression can only be '*' for any character(s) or '|' for a choice. If no regular expression is given then all
materialized views in the selected database are listed.

Show Partitions

SHOW PARTITIONS table_name;

SHOW PARTITIONS lists all the existing partitions for a given base table. Partitions are listed in alphabetical order.

It is also possible to specify parts of a partition specification to filter the resulting list.

Examples:

SHOW PARTITIONS table_name PARTITION(ds='2010-03-03'); -- (Note: Hive 0.6 and later)
SHOW PARTITIONS table_name PARTITION(hr='12'); -- (Note: Hive 0.6 and later)
SHOW PARTITIONS table_name PARTITION(ds='2010-03-03', hr='12'); -- (Note: Hive 0.6 and later)

Version information

Introduced in Hive 2.2.0 via .HIVE-14558

Version information

As of Hive 0.6, SHOW PARTITIONS can filter the list of partitions as shown below.

Version information

Starting with Hive 0.13.0, SHOW PARTITIONS can specify a database ().HIVE-5912

https://issues.apache.org/jira/browse/HIVE-14558
https://issues.apache.org/jira/browse/HIVE-5912

SHOW PARTITIONS [db_name.]table_name [PARTITION(partition_spec)]; -- (Note: Hive 0.13.0 and later)

Example:

SHOW PARTITIONS databaseFoo.tableBar PARTITION(ds='2010-03-03', hr='12'); -- (Note: Hive 0.13.0 and later)

SHOW PARTITIONS [db_name.]table_name [PARTITION(partition_spec)] [WHERE where_condition] [ORDER BY col_list]
[LIMIT rows]; -- (Note: Hive 4.0.0 and later)

Example:

SHOW PARTITIONS databaseFoo.tableBar LIMIT 10; --
(Note: Hive 4.0.0 and later)
SHOW PARTITIONS databaseFoo.tableBar PARTITION(ds='2010-03-03') LIMIT 10; --
(Note: Hive 4.0.0 and later)
SHOW PARTITIONS databaseFoo.tableBar PARTITION(ds='2010-03-03') ORDER BY hr DESC LIMIT 10; --
(Note: Hive 4.0.0 and later)
SHOW PARTITIONS databaseFoo.tableBar PARTITION(ds='2010-03-03') WHERE hr >= 10 ORDER BY hr DESC LIMIT 10; --
(Note: Hive 4.0.0 and later)
SHOW PARTITIONS databaseFoo.tableBar WHERE hr >= 10 AND ds='2010-03-03' ORDER BY hr DESC LIMIT 10; --
(Note: Hive 4.0.0 and later)

Note: Please use instead of to filter the results, as Metastore would not push the latter predicate down into the underlying storage.hr >= 10 hr - 10 >= 0

Show Table/Partition Extended

SHOW TABLE EXTENDED [IN|FROM database_name] LIKE 'identifier_with_wildcards' [PARTITION(partition_spec)];

SHOW TABLE EXTENDED will list information for all tables matching the given regular expression. Users cannot use regular expression for table name if
a partition specification is present. This command's output includes basic table information and file system information like totalNumberFiles, totalFileSize,
maxFileSize, minFileSize,lastAccessTime, and lastUpdateTime. If partition is present, it will output the given partition's file system information instead of
table's file system information.

Example

hive> show table extended like part_table;
OK
tableName:part_table
owner:thejas
location:file:/tmp/warehouse/part_table
inputformat:org.apache.hadoop.mapred.TextInputFormat
outputformat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
columns:struct columns { i32 i}
partitioned:true
partitionColumns:struct partition_columns { string d}
totalNumberFiles:1
totalFileSize:2
maxFileSize:2
minFileSize:2
lastAccessTime:0
lastUpdateTime:1459382233000

Version information

Starting with Hive 4.0.0, SHOW PARTITIONS can optionally use the / / clause to filter/order/limit the resulting list (WHERE ORDER BY LIMIT HIVE
). These clauses work in a similar way as they do in a SELECT statement.-22458

https://issues.apache.org/jira/browse/HIVE-22458
https://issues.apache.org/jira/browse/HIVE-22458

Show Table Properties

SHOW TBLPROPERTIES tblname;
SHOW TBLPROPERTIES tblname("foo");

The first form lists all of the table properties for the table in question, one per row separated by tabs. The second form of the command prints only the
value for the property that's being asked for.

For more information, see the TBLPROPERTIES clause in Create Table above.

Show Create Table

SHOW CREATE TABLE ([db_name.]table_name|view_name);

SHOW CREATE TABLE shows the CREATE TABLE statement that creates a given table, or the CREATE VIEW statement that creates a given view.

Show Indexes

SHOW [FORMATTED] (INDEX|INDEXES) ON table_with_index [(FROM|IN) db_name];

SHOW INDEXES shows all of the indexes on a certain column, as well as information about them: index name, table name, names of the columns used as
keys, index table name, index type, and comment. If the FORMATTED keyword is used, then column titles are printed for each column.

Show Columns

SHOW COLUMNS (FROM|IN) table_name [(FROM|IN) db_name];

SHOW COLUMNS shows all the columns in a table including partition columns.

 lists all the columns in the table with names matching the optional regular expression. Wildcards in the regular expression can only be '*' SHOW COLUMNS
for any character(s) or '|' for a choice. Examples are 'cola', 'col*', '*a|col*', all which will match the 'cola' column. Matching columns are listed in alphabetical
order. It is not an error if no matching columns are found in table. If no regular expression is given then all columns in the selected table are listed.

Version information

As of Hive 0.10.0.

Version information

As of .Hive 0.10

Version information

As of Hive 0.7.

Indexing Is Removed since 3.0! See Indexes design document

Version information

As of .Hive 0.10

Version information

SHOW COLUMNS (FROM|IN) table_name [(FROM|IN) db_name] ; [LIKE 'pattern_with_wildcards']

Added in Hive 3.0 by .HIVE-18373

https://issues.apache.org/jira/browse/HIVE-967
https://cwiki-test.apache.org/confluence/display/Hive/IndexDev
https://issues.apache.org/jira/browse/HIVE-2909
https://issues.apache.org/jira/browse/HIVE-18373

Examples

-- SHOW COLUMNS
CREATE DATABASE test_db;
USE test_db;
CREATE TABLE foo(col1 INT, col2 INT, col3 INT, cola INT, colb INT, colc INT, a INT, b INT, c INT);

-- SHOW COLUMNS basic syntax
SHOW COLUMNS FROM foo; -- show all column in foo
SHOW COLUMNS FROM foo "*"; -- show all column in foo
SHOW COLUMNS IN foo "col*"; -- show columns in foo starting with "col"
OUTPUT col1,col2,col3,cola,colb,colc
SHOW COLUMNS FROM foo '*c'; -- show columns in foo ending with "c"
OUTPUT c,colc
SHOW COLUMNS FROM foo LIKE "col1|cola"; -- show columns in foo either col1 or cola
OUTPUT col1,cola
SHOW COLUMNS FROM foo FROM test_db LIKE 'col*'; -- show columns in foo starting with "col"
OUTPUT col1,col2,col3,cola,colb,colc
SHOW COLUMNS IN foo IN test_db LIKE 'col*'; -- show columns in foo starting with "col" (FROM/IN same)
OUTPUT col1,col2,col3,cola,colb,colc

-- Non existing column pattern resulting in no match
SHOW COLUMNS IN foo "nomatch*";
SHOW COLUMNS IN foo "col+"; -- + wildcard not supported
SHOW COLUMNS IN foo "nomatch";

Show Functions

SHOW FUNCTIONS [LIKE "<pattern>"];

SHOW FUNCTIONS lists all the user defined and builtin functions, filtered by the the regular expression if specified with LIKE.

Show Granted Roles and Privileges

Hive deprecated authorization mode / Legacy Mode has information about these SHOW statements:

SHOW ROLE GRANT
SHOW GRANT

In Hive 0.13.0 and later releases, has these SHOW statements:SQL standard based authorization

SHOW ROLE GRANT
SHOW GRANT
SHOW CURRENT ROLES
SHOW ROLES
SHOW PRINCIPALS

Show Locks

SHOW LOCKS <table_name>;
SHOW LOCKS <table_name> EXTENDED;
SHOW LOCKS <table_name> PARTITION (<partition_spec>);
SHOW LOCKS <table_name> PARTITION (<partition_spec>) EXTENDED;
SHOW LOCKS (DATABASE|SCHEMA) database_name; -- (Note: Hive 0.13.0 and later; SCHEMA added in Hive 0.14.0)

SHOW LOCKS displays the locks on a table or partition. See for information about locks.Hive Concurrency Model

SHOW LOCKS (DATABASE|SCHEMA) is supported from Hive 0.13 for DATABASE (see) and Hive 0.14 for SCHEMA (see). HIVE-2093 HIVE-6601
SCHEMA and DATABASE are interchangeable – they mean the same thing.

When are being used, SHOW LOCKS returns this information (see):Hive transactions HIVE-6460

database name
table name
partition name (if the table is partitioned)

https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-ViewingGrantedRoles
https://cwiki-test.apache.org/confluence/pages/viewpage.action?pageId=45876173#Hivedeprecatedauthorizationmode/LegacyMode-ViewingGrantedPrivileges
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowRoleGrant
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowGrant
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowCurrentRoles
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowRoles
https://cwiki-test.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-ShowPrincipals
https://cwiki-test.apache.org/confluence/display/Hive/Locking
https://issues.apache.org/jira/browse/HIVE-2093
https://issues.apache.org/jira/browse/HIVE-6601
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-6460

the state the lock is in, which can be:
"acquired" – the requestor holds the lock
"waiting" – the requestor is waiting for the lock
"aborted" – the lock has timed out but has not yet been cleaned up

Id of the lock blocking this one, if this lock is in "waiting" state
the type of lock, which can be:

"exclusive" – no one else can hold the lock at the same time (obtained mostly by DDL operations such as drop table)
"shared_read" – any number of other shared_read locks can lock the same resource at the same time (obtained by reads; confusingly,
an insert operation also obtains a shared_read lock)
"shared_write" – any number of shared_read locks can lock the same resource at the same time, but no other shared_write locks are
allowed (obtained by update and delete)

ID of the transaction this lock is associated with, if there is one
last time the holder of this lock sent a heartbeat indicating it was still alive
the time the lock was acquired, if it has been acquired
Hive user who requested the lock
host the user is running on
agent info a string that helps identify the entity that issued the lock request. For a SQL client this is the query ID, for streaming client it may be –
Storm bolt ID for example.

Show Conf

SHOW CONF <configuration_name>;

SHOW CONF returns a description of the specified .configuration property

default value
required type
description

Note that SHOW CONF does not show the of a configuration property. For current property settings, use the "set" command in the CLI or a current value
HiveQL script (see) or in Beeline (see).Commands Beeline Hive Commands

Show Transactions

SHOW TRANSACTIONS;

SHOW TRANSACTIONS is for use by administrators when are being used. It returns a list of all currently open and aborted transactions Hive transactions
in the system, including this information:

transaction ID
transaction state
user who started the transaction
machine where the transaction was started
timestamp when the transaction was started (as of)Hive 2.2.0
timestamp for last heartbeat (as of Hive 2.2.0)

Show Compactions

SHOW COMPACTIONS [DATABASE.][TABLE] [PARTITION (<partition_spec>)] [POOL_NAME] [TYPE] [STATE] [ORDER BY `start`
DESC] [LIMIT 10];

SHOW COMPACTIONS returns a list of all compaction requests currently being or scheduled, including this information:processed

"CompactionId" - unique internal id (As of)Hive 3.0

Version information

As of .Hive 0.14.0

Version information

As of (see).Hive 0.13.0 Hive Transactions

Version information

As of (see).Hive 0.13.0 Hive Transactions

https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties
https://cwiki-test.apache.org/confluence/display/Hive/LanguageManual+Commands
https://cwiki-test.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-BeelineHiveCommands
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-11957
https://issues.apache.org/jira/browse/HIVE-11957
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-SHOWCOMPACTIONS
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-BasicDesign
https://issues.apache.org/jira/browse/HIVE-16084
https://issues.apache.org/jira/browse/HIVE-6037
https://issues.apache.org/jira/browse/HIVE-6460
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions
https://issues.apache.org/jira/browse/HIVE-6460
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-BasicDesign

"Database" - Hive database name
"Table" - table name
"Partition" - partition name (if the table is partitioned)
"Type" - whether it is a major or minor compaction
"State" - the state the compaction is in, which can be:

"initiated" – waiting in the queue to be compacted
"working" – being compacted
"ready for cleaning" – the compaction has been done and the old files are scheduled to be cleaned
"failed" the job failed. The metastore log will have more detail. –
"succeeded" A-ok –
"attempted" initiator attempted to schedule a compaction but failed. The metastore log will have more information. –

"Worker" - thread ID of the worker thread doing the compaction (only if in working state)
"Start Time" - the time at which the compaction started (only if in working or ready for cleaning state)
"Duration(ms)" - time this compaction took (As of Hive 2.2)
"HadoopJobId" - Id of the submitted Hadoop job (As of)Hive 2.2
“Enqueue Time” - Time spent by compaction before start
“Initiator host”- Host ID which started compaction
“TxnId” - A transaction Id associated with this compaction
“Commit Time” - Total time taken by compaction
“Highest WriteId” Highest writeId that compactor includes
“Pool name”- A pool associated with given compaction or default if not associated
“Error message”- error message if any

Examples:

Examples
SHOW COMPACTIONS.
 — show all compactions of all tables and partitions currently being compacted or scheduled for compaction

SHOW COMPACTIONS DATABASE db1
 — show all compactions of all tables from given database which are currently being compacted or scheduled for
compaction

SHOW COMPACTIONS SCHEMA db1
 — show all compactions of all tables from given database which are currently being compacted or scheduled for
compaction

SHOW COMPACTIONS tbl0
 — show all compactions from given table which are currently being compacted or scheduled for compaction

SHOW COMPACTIONS compactionid =1
 — show all compactions with given compaction ID

SHOW COMPACTIONS db1.tbl0 PARTITION (p=101,day='Monday') POOL 'pool0' TYPE 'minor' STATUS 'ready for clean'
ORDER BY cq_table DESC, cq_state LIMIT 42
 — show all compactions from specific database/table filtered based on pool name/type.state/status and ordered
with given clause

Compactions are initiated automatically, but can also be initiated manually with an .ALTER TABLE COMPACT statement

Describe

Describe Database
Describe Dataconnector
Describe Table/View/Materialized View/Column

Display Column Statistics
Describe Partition
Hive 2.0+: Syntax Change

Describe Database

DESCRIBE DATABASE [EXTENDED] db_name;
DESCRIBE SCHEMA [EXTENDED] db_name; -- (Note: Hive 1.1.0 and later)

Version information

As of Hive 0.7.

https://issues.apache.org/jira/browse/HIVE-15337
https://issues.apache.org/jira/browse/HIVE-15337

DESCRIBE DATABASE shows the name of the database, its comment (if one has been set), and its root location on the filesystem. The uses of SCHEMA
and DATABASE are interchangeable – they mean the same thing. DESCRIBE SCHEMA is added in Hive 1.1.0 ().HIVE-8803

EXTENDED also shows the .database properties

Describe Dataconnector

DESCRIBE CONNECTOR [EXTENDED] connector_name;

Since Hive 4.0.0 via HIVE-24396

DESCRIBE CONNECTOR shows the name of the connector, its comment (if one has been set), and its datasource URL and datasource type.

EXTENDED also shows the dataconnector's properties. Any clear-text passwords set will be shown in clear text as well.

Describe Table/View/Materialized View/Column

There are two formats for the describe table/view/materialized view/column syntax, depending on whether or not the database is specified.

If the database is not specified, the optional column information is provided after a dot:

DESCRIBE [EXTENDED|FORMATTED]
 table_name[.col_name ([.field_name] | [.'$elem$'] | [.'key'] | [.'$value$'])*];
 -- (Note: Hive 1.x.x and 0.x.x only. See "Hive 2.0+: New Syntax" below)

If the database is specified, the optional column information is provided after a space:

DESCRIBE [EXTENDED|FORMATTED]
 [db_name.]table_name[col_name ([.field_name] | [.'$elem$'] | [.'key'] | [.'$value$'])*];
 -- (Note: Hive 1.x.x and 0.x.x only. See "Hive 2.0+: New Syntax" below)

DESCRIBE shows the list of columns including partition columns for the given table. If the EXTENDED keyword is specified then it will show all the
metadata for the table in Thrift serialized form. This is generally only useful for debugging and not for general use. If the FORMATTED keyword is
specified, then it will show the metadata in a tabular format.

Note: DESCRIBE EXTENDED shows the number of rows only if statistics were gathered when the data was loaded (see), and if the Newly Created Tables
Hive CLI is used instead of a Thrift client or Beeline. will address this issue. Although ANALYZE TABLE gathers statistics after the data has HIVE-6285
been loaded (see), it does not currently provide information about the number of rows.Existing Tables

If a table has a complex column then you can examine the attributes of this column by specifying table_name.complex_col_name (and field_name for an
element of a struct, '$elem$' for array element, 'key' for map key, and '$value$' for map value). You can specify this recursively to explore the complex
column type.

For a view, DESCRIBE EXTENDED or FORMATTED can be used to retrieve the view's definition. Two relevant attributes are provided: both the original
view definition as specified by the user, and an expanded definition used internally by Hive.

For materialized views, DESCRIBE EXTENDED or FORMATTED provides additional information on whether rewriting is enabled and whether the given
materialized view is considered to be up-to-date for automatic rewriting with respect to the data in the source tables that it uses.

Version information — partition & non-partition columns

In Hive 0.10.0 and earlier, no distinction is made between partition columns and non-partition columns while displaying columns for DESCRIBE
TABLE. From Hive 0.12.0 onwards, they are displayed separately.

In Hive 0.13.0 and later, the configuration parameter lets you use the old behavior, if desired (). hive.display.partition.cols.separately HIVE-6689
For an example, see the test case in the .patch for HIVE-6689

Bug fixed in Hive 0.10.0 — database qualifiers

Database qualifiers for table names were introduced in Hive 0.7.0, but they were broken for DESCRIBE until a bug fix in Hive 0.10.0 (HIVE-1977
).

Bug fixed in Hive 0.13.0 — quoted identifiers

https://issues.apache.org/jira/browse/HIVE-8803
https://issues.apache.org/jira/browse/HIVE-24396
https://cwiki-test.apache.org/confluence/display/Hive/StatsDev#StatsDev-NewlyCreatedTables
https://issues.apache.org/jira/browse/HIVE-6285
https://cwiki-test.apache.org/confluence/display/Hive/StatsDev#StatsDev-ExistingTables
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.display.partition.cols.separately
https://issues.apache.org/jira/browse/HIVE-6689
https://issues.apache.org/jira/secure/attachment/12635956/HIVE-6689.2.patch
https://issues.apache.org/jira/browse/HIVE-1977

Display Column Statistics

ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS will compute column statistics for all columns in the specified table (and for all table_name
partitions if the table is partitioned). To view the gathered column statistics, the following statements can be used:

DESCRIBE FORMATTED [db_name.]table_name column_name; -- (Note: Hive 0.14.0 and
later)
DESCRIBE FORMATTED [db_name.]table_name column_name PARTITION (partition_spec); -- (Note: Hive 0.14.0 to 1.x.
x)
 -- (see "Hive 2.0+: New
Syntax" below)

See for more information about the ANALYZE TABLE command.Statistics in Hive: Existing Tables

Describe Partition

There are two formats for the describe partition syntax, depending on whether or not the database is specified.

If the database is not specified, the optional column information is provided after a dot:

DESCRIBE [EXTENDED|FORMATTED] table_name[.column_name] PARTITION partition_spec;
 -- (Note: Hive 1.x.x and 0.x.x only. See "Hive 2.0+: New Syntax" below)

If the database is specified, the optional column information is provided after a space:

DESCRIBE [EXTENDED|FORMATTED] [db_name.]table_name [column_name] PARTITION partition_spec;
 -- (Note: Hive 1.x.x and 0.x.x only. See "Hive 2.0+: New Syntax" below)

This statement lists metadata for a given partition. The output is similar to that of DESCRIBE table_name. Presently, the column information associated
with a particular partition is not used while preparing plans. As of Hive 1.2 (), the partition column values specified in are type HIVE-10307 partition_spec
validated, converted and normalized to their column types when is set to true (default). These values can be number literals.hive.typecheck.on.insert

Example:

hive> show partitions part_table;
OK
d=abc

hive> DESCRIBE extended part_table partition (d='abc');
OK
i int
d string

Partition Information
col_name data_type comment

d string

Detailed Partition Information Partition(values:[abc], dbName:default, tableName:part_table, createTime:
1459382234, lastAccessTime:0, sd:StorageDescriptor(cols:[FieldSchema(name:i, type:int, comment:null),
FieldSchema(name:d, type:string, comment:null)], location:file:/tmp/warehouse/part_table/d=abc, inputFormat:org.
apache.hadoop.mapred.TextInputFormat, outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat,
compressed:false, numBuckets:-1, serdeInfo:SerDeInfo(name:null, serializationLib:org.apache.hadoop.hive.serde2.
lazy.LazySimpleSerDe, parameters:{serialization.format=1}), bucketCols:[], sortCols:[], parameters:{},
skewedInfo:SkewedInfo(skewedColNames:[], skewedColValues:[], skewedColValueLocationMaps:{}),

Prior to Hive 0.13.0 DESCRIBE did not accept backticks (`) surrounding table identifiers, so DESCRIBE could not be used for tables with names
that matched reserved keywords (and). As of 0.13.0, all identifiers specified within backticks are treated literally when HIVE-2949 HIVE-6187
the configuration parameter has its default value of " " (). The only exception is hive.support.quoted.identifiers column HIVE-6013 that double
backticks (``) represent a single backtick character.

Version information

As of Hive 0.14.0; see and . (The FOR COLUMNS option of ANALYZE TABLE is available as of .)HIVE-7050 HIVE-7051 Hive 0.10.0

https://cwiki-test.apache.org/confluence/display/Hive/StatsDev#StatsDev-ExistingTables
https://issues.apache.org/jira/browse/HIVE-10307
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.typecheck.on.insert
https://issues.apache.org/jira/browse/HIVE-2949
https://issues.apache.org/jira/browse/HIVE-6187
https://cwiki-test.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.support.quoted.identifiers
https://issues.apache.org/jira/browse/HIVE-6013
https://issues.apache.org/jira/browse/HIVE-7050
https://issues.apache.org/jira/browse/HIVE-7051
https://issues.apache.org/jira/browse/HIVE-1362

storedAsSubDirectories:false), parameters:{numFiles=1, COLUMN_STATS_ACCURATE=true,
transient_lastDdlTime=1459382234, numRows=1, totalSize=2, rawDataSize=1})
Time taken: 0.325 seconds, Fetched: 9 row(s)

hive> DESCRIBE formatted part_table partition (d='abc');
OK
col_name data_type comment

i int

Partition Information
col_name data_type comment

d string

Detailed Partition Information
Partition Value: [abc]
Database: default
Table: part_table
CreateTime: Wed Mar 30 16:57:14 PDT 2016
LastAccessTime: UNKNOWN
Protect Mode: None
Location: file:/tmp/warehouse/part_table/d=abc
Partition Parameters:
 COLUMN_STATS_ACCURATE true
 numFiles 1
 numRows 1
 rawDataSize 1
 totalSize 2
 transient_lastDdlTime 1459382234

Storage Information
SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
InputFormat: org.apache.hadoop.mapred.TextInputFormat
OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
Compressed: No
Num Buckets: -1
Bucket Columns: []
Sort Columns: []
Storage Desc Params:
 serialization.format 1
Time taken: 0.334 seconds, Fetched: 35 row(s)

Hive 2.0+: Syntax Change

DESCRIBE [EXTENDED | FORMATTED]
 [db_name.]table_name [PARTITION partition_spec] [col_name ([.field_name] | [.'$elem$'] | [.'key'] |
[.'$value$'])*];

Warning: The new syntax could break current scripts.

It no longer accepts DOT separated table_name and column_name. They would have to be SPACE-separated. DB and TABLENAME are DOT-
separated. column_name can still contain DOTs for complex datatypes.
Optional partition_spec has to appear after the table_name but prior to the optional column_name. In the previous syntax, column_name appears
in between table_name and partition_spec.

Examples:

Hive 2.0+: New syntax

In Hive 2.0 release onward, the describe table command has a syntax change which is backward incompatible. See for details.HIVE-12184

https://issues.apache.org/jira/browse/HIVE-12184

DESCRIBE FORMATTED default.src_table PARTITION (part_col = 100) columnA;
DESCRIBE default.src_thrift lintString.$elem$.myint;

Abort

Abort Transactions

Abort Transactions

ABORT TRANSACTIONS transactionID [transactionID ...];

ABORT TRANSACTIONS cleans up the specified transaction IDs from the Hive metastore so that users do not need to interact with the metastore directly
in order to remove dangling or failed transactions. ABORT TRANSACTIONS is added in Hive 1.3.0 and 2.1.0 ().HIVE-12634

Example:

ABORT TRANSACTIONS 0000007 0000008 0000010 0000015;

This command can be used together with . The latter can help figure out the candidate transaction IDs to be cleaned up.SHOW TRANSACTIONS

Scheduled queries
Documentation is available on the Scheduled Queries page.

Datasketches integration
Documentation is available on the pageDatasketches Integration

HCatalog and WebHCat DDL
For information about DDL in HCatalog and WebHCat, see:

HCatalog DDL in the HCatalog manual
WebHCat DDL Resources in the WebHCat manual

Version information

As of .Hive 1.3.0 and 2.1.0 (see Hive Transactions)

https://issues.apache.org/jira/browse/HIVE-12634
https://cwiki-test.apache.org/confluence/display/Hive/Scheduled+Queries
https://cwiki-test.apache.org/confluence/display/Hive/Datasketches+Integration
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog+CLI#HCatalogCLI-HCatalogDDL
https://cwiki-test.apache.org/confluence/display/Hive/HCatalog
https://cwiki-test.apache.org/confluence/display/Hive/WebHCat+Reference+AllDDL
https://cwiki-test.apache.org/confluence/display/Hive/WebHCat
https://issues.apache.org/jira/browse/HIVE-12634
https://cwiki-test.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-BasicDesign

	LanguageManual DDL

